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Abstract
Understanding normal probability distributions is a crucial objective in mathematics and statistics education. Drawing upon 
cognitive psychology research, this study explores the use of drawings and visualizations as effective scaffolds to enhance 
students' comprehension. Although much research has documented the helpfulness of drawing as a research tool to reveal 
students’ knowledge states, its direct utility in advancing higher-order cognitive processes remains understudied. In Study 
1, qualitative methods were utilized to identify common misunderstandings among students regarding canonical depictions 
of the normal probability distribution. Building on these insights, Study 2 experimentally compared three instructional 
videos (static slides, dynamic drawing, and dynamic drawings done by a visible hand). The hand drawing video led to better 
learning than the other versions. Study 3 examined whether the benefits from observing a hand drawing could be reproduced 
by a dynamic cursor moving around otherwise static slides (without the presence of a hand). Results showed no significant 
learning difference between observing a hand drawing and a moving cursor, both outperforming a control. This research 
links the cognitive process of drawing with its educational role and provides insights into its potential to enhance memory, 
cognition, and inform instructional methods.
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Introduction

In college-level introductory statistics classes, understanding 
and using the normal probability distribution is an important 
learning outcome interrelated with many other skills 
and concepts (Ainsworth, 2008; Batanero et  al., 2004; 
Cohen & Chechile, 1997). Teachers employ a number of 
representations, such as static and dynamic visualizations 
and drawings, to help students learn about the normal 
distribution. However, we lack an understanding of how and 
why students struggle to understand the normal probability 
distribution and what instructional practices can be useful 
to alleviate the struggle.

The studies reported have two objectives. First, we 
explored what students do and do not understand about 
normal distributions and the visualizations teachers use to 
represent them (Study 1). To this end, we surveyed a small 
sample of students nearing the end of a college-level intro-
ductory statistics class that had been explicitly taught about 
normal distributions. Qualitative work diving into what stu-
dents do not understand about normal probability distribu-
tions is a crucial foundation for experiments that explore 
the effect of different instructional tools because the qualita-
tive work helps identify concepts to teach and pain points to 
address, which may reveal student misunderstandings that 
teachers have assumed students to all understand (Airey & 
Linder, 2009; Rau, 2017; Uttal & O’Doherty, 2008). For 
example, when teachers shade in some area under a normal 
curve to represent a corresponding probability, do students 
understand that the normal curve is a probability distribu-
tion and thus that the total area under the curve equals 1? 
Do students understand the relationship between a continu-
ous probability distribution and a discrete histogram, or 
why it might be helpful to overlay one on top of the other? 
In essence, teachers may be asking students to make sense 
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of novel concepts via visualizations they do not understand 
(Airey & Linder, 2009).

To foreshadow our results, we found evidence that 
many students sampled in the current study, even after 
instruction, had a relatively weak understanding of what 
normal distributions were, with many misconceptions 
and misinterpretations of the canonical visualization. This 
finding raises troubling questions about what teachers should 
expect students to learn from visualizations of the normal 
distribution, a common foundational visualization that 
instructors rely on to communicate new ideas about statistics 
(Chance et al., 2004).

Second, based on these findings, we attempted to teach 
students how to interpret commonly used representations of 
normal probability distributions via a targeted intervention 
(Study 2 and Study 3). We created our instructional 
materials in the form of brief videos, and grounded their 
design in theories and findings from the cognitive sciences 
and educational psychology. We drew on three research 
literatures: static versus dynamic visualization, embodied 
cognition, and drawing. We endeavored to make the 
interventions brief so they could be more easily added as 
supplementary materials to an ongoing statistics class. 
Although the video interventions were brief, our goal was 
to produce lasting learning that may enable students to better 
interpret future explanations of statistical concepts couched 
in terms of the normal curve. Across the two studies, we 
developed several interventions and tested their effects via 
both immediate and delayed post-tests. Below, we discuss 
the rationale behind the design of our interventions.

Literature review

Static and dynamic visualizations

Visualizations can help people learn new concepts (Shepard, 
1967), as predicted by many theories in psychology (e.g., 
visual argument hypothesis; Vekiri, 2002; dual coding 
theory; Clark & Paivio, 1991). Visualizations can be either 
static, such as pictures, or dynamic, as such animations. 
Static visualizations, such as diagrams, flowcharts, graphs, 
maps, and schematic illustrations of objects or processes 
are ubiquitous in Science, Technology, Engineering, and 
Mathematics (STEM) education, both in textbooks and 
formal instruction (Gilbert, 2005; Gilbert et  al., 2007). 
Visualizations benefit learning across topics/domains, 
assessment types, and visualization formats (Bauer & 
Johnson-Laird, 1993; Bartram et al., 1980; Carney & Levin, 
2002; Holliday, 1977; Scanlan, 1989; Rau, 2017).

Dynamic visualizations, defined in their prototypical 
form, are animations of some visible phenomenon, with 
visual representations appearing gradually on the screen 

(Castro-Alonso et  al., 2015; Hegarty, 2004). Dynamic 
visualizations can benefit learning in STEM domains by 
showing typically unseen processes and abstract concepts 
in a concrete way that unfolds over time (e.g., chemical 
reactions on the molecular level; Zhang & Linn, 2011). 
Dynamic visualizations have been widely used by instructors 
and researchers for decades as a way of teaching complex 
concepts and systems (Ayres & Paas, 2007; Mayer, 2005; 
Van Gog et al., 2009).

Dynamic visualizations might be superior to traditional 
static visualizations for three reasons. First, dynamic 
visualizations can explicitly represent not just the end result 
of processes but, rather, the processes themselves (Castro-
Alonso et al., 2014; Chandler, 2004; Hegarty, 2004; Mayer 
& Moreno, 2002). Second, research has shown that dynamic 
visualizations may reduce cognitive load by “distributing” 
new information across time (for a review, see Ainsworth, 
2008) and, relatedly, better match the computational demands 
of learning (Tversky et  al., 2002; Wong et  al., 2009). 
Third, dynamic visualizations may be more engaging or 
motivating than static ones (Rieber, 1991). A meta-analysis 
of 47 independent comparisons of static versus dynamic 
representations found that dynamic representations promote 
conceptual development and inferences in science domains to 
a higher degree than static visualizations (McElhaney et al., 
2015). However, in cases where dynamic visualizations do 
show learning benefits, it is unclear whether the observed 
benefits are simply a result of longer time spent interacting 
with the dynamic visualizations.

Despite some evidence suggesting that the benefit of 
dynamic visualizations may lie in their ability to alleviate 
cognitive load (e.g., Ainsworth, 2006), others argue that such 
visualizations may, in fact, tax working memory because of 
their inherently transient nature (Ayres et al., 2009; Chandler, 
2004; Hegarty, 2004; Höffler & Leutner, 2007; Lowe, 2004). 
As a video or animation changes over time, the earlier parts 
are gone and can no longer be accessed by learners (Castro-
Alonso et al., 2014). Even when learners can replay the 
video, they still need to mentally rehearse the information 
to keep it activated once the video has advanced, which 
taxes working memory (Sweller et al., 2011). A potential 
way to counteract this effect might be to connect dynamic 
visualizations, through bodily actions, to the learner’s own 
physical experience in the world (de Koning & Tabbers, 
2011). In other words, "embodying" visualizations could aid 
students in reaping the benefits of dynamic visualizations.

Embodied cognition

An embodied cognition framework assumes that people’s 
physical movements can shape cognition and learning 
(Da Rold, 2018; Tran et al., 2017). A growing body of 
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work demonstrates that embodiment can even support 
the learning of highly abstract concepts and higher-order 
skills such as problem-solving and reading comprehension 
(Glenberg et  al., 2008; Thomas & Lleras, 2009; Zhang 
et al., 2021). Importantly, the facilitative effect of bodily 
movements during learning has been demonstrated even 
when the learners themselves are not the source of the bodily 
action but are simply observing others’ bodily movements 
in a video (Da Rold, 2018; de Koning & Tabbers, 2013; 
Glenberg et al., 2008, 2011; Son et al., 2018; Thomas & 
Lleras, 2009; Tran et al., 2017).

In the specific context of multimedia learning, students’ 
learning is enhanced by including an instructors’ gestures 
in instructional videos (Rueckert et al., 2017; Son et al., 
2018). For instance, in one study, students who watched an 
instructional video with a human-like pedagogical agent 
who performed gestures and displayed facial expressions 
learned more than students who watched a video with a 
static pedagogical agent (Mayer & DaPra, 2012). In another 
study, students who learned about electrical circuit analysis 
by attending to a pedagogical agent’s deictic movements 
learned more than students who were similarly guided by 
an animated arrow or who were not provided any elements 
designed to guide their attention (Moreno et al., 2001, 2010).

Mayer (2014) has referred to the idea that the instructor’s 
bodily movement can enhance instruction and learning as 
the embodiment principle in multimedia learning. According 
to this principle, embodiment cues are hypothesized to be 
most beneficial when they serve to guide cognitive processes 
that specifically support learning (e.g., helping students 
allocate attention to or process important information) 
(Mayer, 2014). But the embodiment principle encompasses 
other mechanisms as well. For example, embodiment cues 
may communicate to students that the instructor cares about 
them, which in turn creates a sense of social partnership 
between the students and the instructor (Mayer, 2014; 
Moreno et al., 2010).

To unpack the potential cognitive mechanisms underlying 
the effects of embodiment, we consider the potential benefits 
that come from recruiting multimodal systems during learn-
ing (Garcia et al., 2020). The presence of embodiment dur-
ing learning may recruit additional sensorimotor systems for 
processing stimuli, which might not otherwise be engaged. 
This sensorimotor engagement could create more embod-
ied representations of the content (e.g., spatial, temporal) 
to augment other less embodied representations (e.g., lin-
guistic, notational, or a-modal / abstract). These embodied 
representations may be more robust and interconnected with 
other representations, or simply easier to retrieve later on.

Research has provided preliminary evidence that learn-
ers’ previously established visual representations mediated 
the effect of embodiment on learning (Zhang et al., under 
review). Specifically, learners who watched videos with 

hands-on demonstrations referred back more to those visual 
representations during a post-test than learners who did not 
watch videos with embodiment, and learners who referred 
back more to visual representations performed better on 
the post-test. Embodiment may have led to the encoding of 
richer visual representations, more distributed across cogni-
tive systems, thereby decreasing the chances of forgetting 
the information or by making it easier to retrieve that infor-
mation. Embodiment may have also eased the cognitive load 
from the transient nature of dynamic multimedia presen-
tations, by providing additional sensorimotor pathways for 
encoding and processing temporal information alongside the 
already active pathway of language processing (Sepp et al., 
2019).

Drawing

An interesting case to explore the combination of dynamic 
visualizations and embodied cognition is instructional 
drawings presented to students. Learners might benefit 
directly from performing generative drawings (Schemeck 
et  al., 2014), but they also may benefit from watching 
others draw (e.g., on blackboards), as commonly happens 
in instructional contexts (Quillin & Thomas, 2015). Indeed, 
students learned more from a biology lecture accompanied 
by dynamic drawing (as in a Khan Academy video) than 
from a lecture that only featured the final product of the 
drawing (Fiorella et  al., 2019). Similarly, students who 
watched an instructor drawing and explaining the doppler 
effect learned more than students who viewed only the final 
product of the drawings while listening to the same verbal 
explanation (Fiorella & Mayer, 2016).

Both watching the instructor’s full body and watching 
only the instructor’s hand had positive effects on students’ 
learning of the doppler effect when compared to a control 
group that observed completed, already-drawn diagrams. In 
contrast, watching a dynamic drawing of the same diagrams 
without a visible hand did not improve learning of the 
doppler effect when compared to the control group (Fiorella 
& Mayer, 2016). These findings suggest that watching the 
hand generate the drawing⎯an embodied component⎯may be 
a necessary component of drawings as an effective teaching 
device.

From these few studies, we can see at least two features 
of drawings that seem to have a beneficial effect on learning. 
First, the dynamic unfolding of the drawing over time is 
better than a static drawing. Dynamic unfolding can slow 
down and guide the comprehension process, allowing 
learners to observe individual components, notice subtleties, 
and process and integrate components over time leading to 
a wholly different processing experience (Fiorella & Zhang, 
2018; Quillin & Thomas, 2015). It also may support joint 
attention because the instructor's drawing activity temporally 
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matches the parts of the diagram/figure that students are 
supposed to be attending to (Suthers, 2014).

Second, embodied dynamic drawings, generated by a 
visible hand, are better than a static drawing without a hand. 
Fiorella and Mayer (2016) found that watching drawing 
generated by a visible hand was significantly better than 
viewing a static drawing; but watching drawing without 
a visible hand was not. What we do not know is whether 
a dynamic drawing with a visible hand is better than a 
dynamic drawing without a hand. Further, given that the 
research on drawing is not well connected with research on 
visualizations more generally, we do not know how dynamic 
drawings (embodied or not) compare to non-drawn static or 
dynamic visualizations such as those generated by software 
(such as R) and used in statistics courses.

Current studies

In the current research, we tested whether watching a hand 
drawing, which is both dynamic and embodied, can improve 
learners’ understanding of the normal probability distribu-
tion. First, in order to identify where learners’ understand-
ing needs improving, we leveraged the benefits of qualitative 
analysis to explore what students knew about drawings of 
the normal distribution (Study 1). Then, we designed two 
experiments to investigate (i) whether observing a hand 
drawing could improve students’ learning over and above 
what they might get from static slides (Study 2); and (ii) 
whether the learning benefits of drawing could be achieved 
by an enhanced “dynamic” version of the static slides where 
a moving cursor directs the student's attention (Study 3). In 
both Study 2 and Study 3, we were interested in cognitive 
and metacognitive effects of the intervention. The outcome 
variables of interest were students’ performance on assess-
ment questions as well as the accuracy of their judgments of 
learning. These research questions are especially important 
because many instructional videos on the internet consists 
of narrated static slide decks, which only sometimes include 
a small “talking head”; and in previous research, we found 
that hands were visible at all in only 32% of a sample of You-
Tube instructional videos focused on the concept of standard 
deviation (Son et al., 2018).

Study 1

Method

Participants

Participants were 39 undergraduate students at University 
of California, Los Angeles (UCLA), taking a 10-week 

introductory statistics course. Due to the COVID-19 
pandemic, the entire course was taught remotely (online). 
Because COVID also limited ways of recruitment, students 
volunteered to participate in the study for extra credit 
toward their final course grade and did not get any other 
form of compensation. All students were presented with the 
opportunity and the extra credit was worth 0.5% of students’ 
final course grade. The amount of extra credit was not high 
so that students would not risk discomfort to participate. 
The survey activity also provided potential educational value 
because the content (the normal distribution) was part of 
the course's learning outcomes. These characteristics of 
recruitment meet the justice and beneficence criteria of using 
course extra credit to recruit participations (Fuad & Jones, 
2012). The institutional review board approved the study. 
Consent was obtained from participants online.

Design and procedure

Students were emailed an invitation to participate in the 
study near the end of the 10-week course. By that point, 
students had already been taught the basics of the normal 
distribution. Students who wished to participate clicked a 
link to complete a Qualtrics survey (Qualtrics, Provo, UT, 
USA). As they worked through the survey, students could not 
go back to revise their answers to previous questions. Upon 
completion, participants were asked to rate the difficulty of 
the survey as a whole, on a scale from 0 to 10 (0 = not hard 
at all), so that we could understand whether participants 
perceived the survey to be challenging or not. The time to 
complete the survey ranged from 30 min to 1 hour.

Materials

The survey consisted of 15 questions about probability 
(Appendix A), including basic characteristics of a normal 
curve, as well as more advanced topics such as sampling dis-
tributions, p-values, and related statistical topics. The survey 
was used to assess students’ understanding of a range of top-
ics covered in the course. Only the four open-response ques-
tions specifically about interpreting drawings of the normal 
probability distribution were used for the current study (see 
Results). For example, we asked what is the total area under a 
curve drawn to represent the normal probability distribution. 
We also asked questions to test whether students understood 
the symmetric property of a normal probability distribution 
and could use it to estimate probabilities.

Coding

The first author, who has taught the class many times using 
the same curriculum as used by the students, graded each 
response to the four questions as either correct or incorrect 
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based on a predetermined coding rubric co-developed with 
the instructor of the class. Then, the same experimenter 
read participants’ incorrect answers to find common 
misconceptions. After identifying the misconceptions, 
all incorrect responses were categorized as to whether 
or not they provided evidence of each misconception. 
Although there are disadvantages to using only one coder, 
the advantage in this case is that the coder was highly 
experienced in interpreting students’ responses in the context 
of this particular curriculum. Findings that result from Study 
1 are tested more objectively in Study 2.

Results

Below, we report on findings from the four questions related 
to normal probability distributions.  A summary of the 
findings is shown in Table 1.

On average, students rated the difficulty of the questions as 
6.44 on a 0–10 scale (SD = 1.89), which suggests that students 
perceived the questions to be somewhat challenging.

In the first question, students were presented with a 
curve described as a normal probability distribution, with 
the entire area under the curve shaded (Fig. 1). They were 
asked whether it was possible to estimate the probability rep-
resented by the shaded region and elaborate on their answer 
in an open response.

Out of 39 students, about one-third (14 students) did not 
know that the total probability under the curve is equal to 1. 
Out of these, ten students (25.6%) said that the probability 
could not be estimated because there were no numbers on 
the x-axis. One student wrote:

“Since this is a bell-shaped curve there is an equal 
amount of values before and after the median in the 
center of the curve. Given that there are no values on 
the graph I wouldn't be able to estimate a specific num-
ber to represent the shaded region.”

Other than these ten students, the remaining four students 
who answered the question incorrectly either said that they 
could estimate the probability under the curve but did not 
give a specific value, or gave a wrong explanation. One of 
these students wrote: “Yes you can [estimate the probabil-
ity], why, because the area under the curve, my estimate 
would be depending on what it is asking and deal with Z 
scores.” Many students who said that the probability could 
not be estimated similarly thought, erroneously, that comput-
ing this probability required a Z-score.

The second question presented students with another nor-
mal curve, this time with a vertical line marking its center. 
The area to the right of the center line was shaded (Fig. 2), 
and students were again asked whether they could estimate 
the probability represented by the shaded area. In contrast 
to Question 1, all 39 students answered that they could, Ta
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though two of them did not provide specific values. Most 
students – including those who previously had said they 
could not estimate the probability when the total area under 
the curve was shaded – seemed to understand that half of 
the area under the curve represented a probability of 0.5. 
Thus, the same students who previously thought they would 
need numerical values on the x-axis in order to estimate 
total probability under the curve had no problem generating 
a probability when only half the region under the curve was 
shaded. One of these students said, “The probability is 50% 
since half of the data points fall under the shaded region.”

The third question again presented students with the 
curve from Question 1, but this time, paired it with a wider 
normal curve. The total area under each curve was shaded 
(Fig. 3). We asked students in a multiple-choice question: 
“If we draw a normal distribution that is wider than the 
one in Question 1 (as shown below), how would the prob-
ability represented by the shaded part under the distri-
bution change?” and then asked students to explain their 
answers. Only 14 students (35.9%) answered correctly that 
the probability would not change and provided a reason-
able explanation of their answer. For example, one stu-
dent answered: “The probability is still 100% because the 
whole distribution is shaded in"; another said: “It would 

not change at all. The area under the curve still represents 
the entire probability.”

The 24 students who answered Question 3 incorrectly 
made three main types of errors: (1) 11 students said that 
the probability would change if the distribution became 
wider. One of these students said: “The probability would 
change to encompass fewer Y values and more X values.” 
Another said: “The original distribution is normal and the 
wider distribution is not. The empirical rule [a shorthand 
to remember the percentage of values that fall within each 
standard deviation of the normal distribution] only applies 
to normal distributions. So indicators of 68% or 2.5% 
would not exist.” (2) Seven students did not say whether 
the probability represented by the shaded region would 
change or not. For example, one student said only that 
“the peak is higher than the wider one.” (3) The remain-
ing seven students said that the probability would not 
change, but were not able to provide a sensible explana-
tion of their answer. For example, one said: “I don't think 
it would change, making it wider would only help people 
clearly see the distinction between the x-axis, but I don't 
think anything more.”

Fig. 1  A normal curve in which all area under the curve is shaded, 
from Question 1

Fig. 2  Normal curve with the upper half shaded, from Question 2

Fig. 3  Two normal curves differing in width, from Question 3
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Finally, Question 4 tested whether students could use the 
symmetry property of the normal distribution, together with the 
knowledge that the entire area under the curve was 1, to reason 
about probabilities. Students were presented with the normal 
curve shown in Fig. 4. One vertical line marked the mean, which 
was labeled as 8, and another marked the value 10 on the x-axis. 
The area under the curve greater than 10 was shaded. A standard 
deviation was not provided. The question read:

“The probability of a randomly sampled data point 
being greater than 10 is 0.2. Based on this, what is the 
probability of a randomly sampled data point being 
greater than 6? Explain your answer.”

Nearly two-thirds of the sample students (25 students, or 
64%) generated incorrect probabilities (the correct answer is 0.8) 
and provided a variety of explanations. As before, five students 
erroneously tried using the concept of Z-scores or the "empirical 
rule" to explain their answers. One, for example, said:

“If the probability of a random data point being 
greater than 10 is .2, then 10 has a z score of 2. This 
means that a change in value from 8 to 10 is meas-
ured in 2 standard deviations, so 6 to 8 is another 2 z 
scores. So the probability of a randomly sampled data 
point being greater than 6 is about 98%, because it 
is represented by the area of the normal distribution 
above -2 standard deviations from the mean.”

Another student said that the probability would be 0.6 
“because there is a z-score of -2.”

Discussion

The results of Study 1 shed light on what students might not 
have understood about the normal probability distribution 
when they were nearing completion of an introductory 
statistics course at a highly selective university. Both the 
content and prevalence of the identified misunderstandings 
provide important insights into how students in this course 
interpret drawings of the normal probability distribution. In 
particular, many students surveyed in this study do not fully 
and consistently understand how the area under a normal 
curve can be used to represent probability, or that the total 
area under a probability distribution would add up to 1.

It is intriguing that more students were able to understand 
half of the area under the normal curve equates to 0.5 than 
to understand the entire area under the curve adds up to 1. 
Future studies could further investigate whether concepts 
tested in these two questions are fundamentally different or 
whether there was an order or question specific effect. For 
example, answering the first question about the entire area 
under the curve might have caused students to pay attention 
to some features that might have helped them to answer the 
second question. Another possibility is that seeing “half of 
the area” in the visualization cued students to the concept of 
“half” (i.e., a probability of 0.5). This connection between 
a visual half and a probability of 0.5 might be stronger than 
the connection between seeing “the entire area” under a 
curve and the probability of 1.

Students also failed to infer probabilities based on the 
symmetric property of a normal probability distribution, 
often resorting to ideas such as z-scores, inappropriately 
applying unnecessary (albeit strongly associated) statistical 
concepts to the drawing at hand.

Nonetheless, the current study is exploratory in nature. 
It was meant to provide qualitative insights of common 
misconceptions that would guide the design of forthcom-
ing experimental studies. Because we only surveyed 39 stu-
dents from one class, it remains unclear whether the findings 
would apply more broadly to, for example, students in other 
departments or institutions. What the findings enabled us 
to do, instead, is to lay out the misconceptions and help 
us design experiments to test whether these misconceptions 
could be remedied by interventions based on theories in 
cognitive psychology. The findings of our next experiments 
support the validity of the qualitative analysis.

It's worth pointing out that the goal of this study was not 
to identify misconceptions that are universal. Instead, this 
qualitative approach is a part of our continuous improve-
ment approach to designing learning interventions (Stigler 
et al., 2020). First, we want to understand the "current state" 
(Rother, 2009) by identifying the misconceptions students 
have. We then hypothesize the causes of the misconceptions, 
design interventions, and only then conduct randomized 

Fig. 4  A normal curve with a mean of 8 and the region greater than 
10 shaded, from Question 4
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experiments. This way, interventions can be designed in 
a targeted fashion and experimental findings can be inter-
preted in the context of what learners actually need.

Given the results of Experiment 1, we next tested whether 
learners would benefit from an intervention intended to 
help them interpret drawings and visual representations of 
the normal probability distribution. Therefore, in Study 2 
and Study 3, we designed experiments to explore whether 
drawings and other dynamic visualizations could remedy 
students’ misconceptions about probabilities under the 
normal curve through a brief instructional intervention.

Study 2

Study 2 set out to answer two questions: would students 
understand the normal probability distribution better with 
the aid of videos that depict drawing (with or without hands) 
compared to a video with static visualizations? If the answer 
is yes, would the effect of the intervention produce lasting 
and transferable knowledge?

We created a brief instructional intervention to pro-
vide students with the fundamental knowledge they would 
need for interpreting visual representations of probability 
distributions that teachers commonly use to explain more 
advanced statistical concepts. The focus of the instruction 
was on the normal curve and its use as a probability distri-
bution for modeling the distribution of a variable. Effects 
of the intervention were assessed on both immediate and 
delayed post-tests. The instruction was implemented in 
the form of a brief (15 min) video, of which we created 
three versions (experimental conditions): Drawing+Hand 
(dynamic and embodied), Drawing Only (dynamic but 
not embodied), and Static Slides (neither dynamic nor 
embodied). Students were randomly assigned to view one 
of the three versions. Based on concerns raised in the 
previous literature, we tried to equate as much as possible 
the information contained across the three conditions of 
the video.

In the Drawing+Hand condition, participants watched 
an instructional video that contained drawings dynamically 
created by a hand. In the Drawing Only condition, partici-
pants watched only the screen recording of the drawing 
without the hand. In the Static Slides condition, participants 
watched a series of static slides depicting computer-made 
visualizations equivalent to the final state of the drawings 
in the other videos.

The immediate post-test, described below, was adminis-
tered right after students viewed the instructional video. A 
delayed post-test was administered three weeks later. Meas-
uring delayed effects is important for two reasons: (1) to 
test whether learning lasts and can generalize beyond a sin-
gle, controlled laboratory session (Halpern & Hakel, 2002; 

Stigler et al., 2020); and (2) because sometimes the impact 
of an intervention, especially on tests of transfer, is evident 
only after a delay (Adams et al., 2014; McLaren et al., 2015).

If dynamic drawing aids learning over and above static 
presentation of the same content, then both the Drawing 
Only group and the Drawing+Hand group would perform 
better on the post-test than the Static Slides group. If 
embodiment further contributes to learning, then the 
Drawing+Hand group would perform better on the post-test 
than the Drawing Only group (and the Static Slides group).

Method

Participants

Seventy-nine undergraduate students taking a summer-
session introductory statistics course at a large public 
research institution participated in the study. Of these 
students, 71 completed the study and took both the 
immediate and delayed post-tests. Eight additional 
participants were further excluded from the study based 
on predetermined exclusion criteria, which included (1) 
spending either less than 400 s or more than 7,200 s on 
the survey; (2) reporting significant technical difficulties or 
disruptions while completing the survey (e.g., not having 
a quiet enough study environment for them to watch the 
instructional video); or (3) writing the same response for 
every free response question (e.g., “Not sure”). The final 
sample consisted of 63 students (16 in Drawing+Hand, 23 
in Drawing Only, and 24 in Static Slides). They reflected the 
ethnic diversity of the campus: 50.8% Asian, 4.8% Black or 
African American, 12.7% Hispanic or Latino, 23.8% White, 
and 7.9% multiracial or other.

It is worth noting that because the study was conducted at 
the outbreak of COVID-19, the class was taught online. As 
in Study 1, students were offered extra credit to participate in 
the study. The study was approved by the institutional review 
board at the university.

Although our sample size was predetermined by the number 
of students from the statistics course who voluntarily partici-
pated, we conducted a power analysis to understand the mini-
mum effect size that could be detected with our sample size 
using the pwr package in R (Champely et al., 2017; Cohen, 
1988). Based on an α of .05, a power of .80, and a sample 
size of 16 per group (which is the smallest group we had), the 
minimum Cohen’s f this study could detect was 0.46.

Design and procedure

Students who volunteered to participate clicked on a link 
for a Qualtrics survey, at which point the survey software 
randomly assigned them to one of the three conditions: 
Drawing+Hand, Drawing Only, or Static Slides.
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All three conditions included an initial survey, followed 
by an instructional video, a self-judgment about their level 
of learning, an immediate post-test and, three weeks later, 
a delayed post-test. In the initial survey, participants com-
pleted a pretest with seven questions assessing their under-
standing of frequency histograms, density histograms, 
and probability distributions. Then, participants watched 
a 16-min instructional video, which varied depending on 
condition. Students then rated the pace of the video and how 
much of the video they felt they understood on a scale of 0 to 
100. Afterward, they answered 15 post-test questions, three 
survey questions that elicited their opinions of the video, 
and one screening question asking if anything went wrong 
during the experiment.

Three weeks later, when students took their final course 
exam, they were informed that they could get additional extra 
credit by taking the delayed post-test. Students participated 
voluntarily in this activity. Importantly, the material covered 
in the introductory statistics course between the immediate 
and delayed post-tests, which focused on constructing 
statistical models to explain variation, did not vary across 
experimental groups.

Materials

For the Drawing+Hand condition (Fig. 5, top), we vide-
otaped a hand as it was drawing illustrations on an iPad; 
to this end, we used an external camera that captured both 
the hand and the iPad’s screen. We then recorded a voice 
narration to accompany the video. This format resulted in 
a drawing video that was both dynamic (unfolding through 
time) and embodied (showing the body part that generates 
the drawing).

For the Drawing Only condition, we used the same audio 
track, but this time paired it with the iPad's screen recording 
of the drawing as it was being produced for the drawing hand 
condition. Thus, the only difference between these first two 
conditions was in whether the hand could be seen producing 
the drawing or not, which allowed us to gauge the effect of 
this minimal level of embodiment over and above the effect 
of the dynamic representation (i.e., drawing unfolding over 
time) without the hand.

Finally, the Static Slides condition used the same audio 
track, but instead of showing the drawing unfold dynami-
cally over time, it displayed a series of static slides. The 
slides were designed to match the final state of different 
illustrations in the other two conditions, but were produced 
using standard, computerized drawing tools such as those 
included in PowerPoint. For example, the two drawing vid-
eos contained a manually drawn histogram while the static 
slides video contained a histogram made using R and Power-
Point. All videos were accompanied by the same audio track. 
(See Fig. 5 for several screenshots from each condition.) 

All video materials can be accessed through the Open Sci-
ence Framework (OSF) wiki page: https:// osf. io/ af3p9/? 
view_ only= e0668 f936b 58457 7b2b5 ffacb 66d6d 2f.

Measures

Pretest. The pretest contained seven questions designed 
to assess participants’ existing knowledge of normal 
probability distributions. Four questions were the exact same 
questions as in Study 1. All seven pretest questions were also 
included in the immediate post-test. Four of the questions 
were included in all three tests: pre-, post-, and delayed post-
test. A full list of these questions is included in Appendix B.

Accuracy of judgment of learning After watching the video, 
participants rated their understanding of the video on a scale 
of 0 to 100 in percentage terms. Following previous litera-
ture’s convention, we calculated the accuracy of participants' 
judgment of learning by subtracting actual post-test perfor-
mance (between 0% and 100%) from self-rated understanding 
(between 0% and 100%) (i.e., the bias measure; Griffin et al., 
2009; Maki et al. 2005). For example, an overly confident par-
ticipant who rated their understanding to be 80% and scored 
70% correct on the post-test would obtain a score of 80% − 
70% = 10% for their accuracy of judgment of learning. Thus, 
0% corresponds to perfect accuracy of judgment of learning, 
a positive score indicates overestimation of learning, and a 
negative score indicates underestimation.

Immediate post‑test The immediate post-test contained 
17 questions, seven of which were identical to those on the 
pretest. These questions were designed based on students’ 
misconceptions identified in Study 1, which the instructional 
videos were designed to address. In addition to directly ask-
ing students to recall the concepts, we also designed ques-
tions where students needed to apply what they have learned 
about normal probability distributions to novel contexts. The 
questions were a combination of multiple choice and free 
responses questions designed to assess students’ conceptual 
understanding of areas under the normal curve and their cor-
responding probabilities, the symmetry of the normal distri-
bution, the relationship between curve width and probabili-
ties, the features of a faceted histogram, and the use of the 
normal distribution as a data-generating model. A complete 
list of these questions is included in Appendix C. Cronbach’s 
alpha for the 17 questions was .73.

Delayed post‑test The delayed post-test contained 17 ques-
tions. Seven of these questions were duplicates of questions 
included on the immediate post-test, and the rest were new 
questions that required students to engage in inference and 
transfer (see Appendix D). Cronbach’s alpha for the 17 ques-
tions was .76.

https://osf.io/af3p9/?view_only=e0668f936b584577b2b5ffacb66d6d2f
https://osf.io/af3p9/?view_only=e0668f936b584577b2b5ffacb66d6d2f
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Scoring of tests

Three trained coders, blind to each participant's experimental 
condition, scored students’ responses on the pretest, the 
immediate post-test, and the delayed post-tests independently 
from each other. Each question was randomly assigned to be 
scored by two of the three coders. Disagreements in scoring 
were discussed in a group meeting, also blind to condition, 
until a consensus was reached. Coders reached an average 
of 89% consistency after the first round of coding. The final 
consistency rate after the group meeting was 100%.

Participants were given one point for each correct 
response. Summary scores for each participant and each 
of the three tests were calculated by summing the points 
earned across all questions of that test. Scores on the pre-
test, therefore, could range from 0 to 7 and, on each of the 

two post-tests, from 0 to 17. In the figures below (Figs. 6, 
7, and 8), we present the percentage of correct responses 
instead of raw scores to facilitate comparisons across the 
tests.

Results

Video ratings

On average, participants rated their understanding of the 
video they watched as 76.6 on a 100-point scale (SD = 
17.5). The mean rating for the Drawing+Hand group was 
77.5 (SD = 13.5), for the Drawing Only group, 80.52 (SD 
= 17.2), and for the Static Slides group, 72.3 (SD = 19.8). 
A one-way ANOVA revealed no significant difference 

13:48: “a common 

misunderstanding is to 

think the probability of 

getting a number higher 

than the mean is always 

0.5”

13:55: “this is true only 

when the distribution is 

normal”

14:07: “If the distribution is 

skewed to the left, the 

probability… is less than 

0.5”

Drawing+

Hand

Drawing 

Only

Static 

Slides

Fig. 5  Screenshots of videos from the three experimental conditions
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across the three conditions (F(2,60) = 1.35, p = .267, η2 
= .00).

Pretest performance

Participants on average correctly answered 70% of the 
pretest questions (i.e., 4.87 of seven questions). The 
Drawing+Hand group answered 71% of the questions 
correctly (SD = 0.24); the Drawing Only group answered 
67% of the questions correctly (SD = 20); and the Static 
Slides group answered 70% of the questions correctly (SD 
= 0.27). The three groups did not differ significantly on 
their pretest performance (F (2,60) = .153, p = .858, η2 
= 0.01).

Accuracy of judgment of learning by condition

Figure 6 shows participants’ accuracy of judgment of learning. 
(Note that both positive and negative numbers are less accurate 
than 0.) Descriptively, the Drawing+Hand group’s judgment 
of learning is the closest to 0. A one-way ANOVA did not find 
a significant effect of condition on participants’ accuracy of 
judgment of learning (F(2,60) = 2.56, η2= .08 , p = .086). Post 
hoc pairwise comparisons revealed that the Drawing+Hand 
group was significantly different in their judgment of learn-
ing compared to both the Drawing Only group (t(60) = 3.08, 
padj = .009) and the Static Slides group (t(60) = 2.53, padj = 
.041). There was no significant difference in accuracy of judg-
ment of learning between the Drawing Only group and Static 
Slides group (t(60) = 0.63, padj = 1). (Note: the p-values were 
adjusted for multiple comparisons using Bonferroni.)

We also tested, using one-sample t-tests, whether each 
group’s average judgments of learning were significantly 

different from 0. The Static Slides group significantly overesti-
mated their learning (t(23) = 2.72, p = .012), as did the Draw-
ing Only group (t(22) = 4.00, p < .001). The Drawing+Hand 
group’s judgment of learning did not significantly differ from 
0 (t(15) = 0.18, p = .863).

Immediate post‑test performance

Scores on the immediate post-test for each of the three con-
ditions are shown in Fig. 7. Students in the Drawing+Hand 
condition had higher scores, on average, than those in 
the other two conditions. We used a one-way ANalysis 
of COVAriance (ANCOVA) to explore the impact of 

Fig. 6  Accuracy of judgment of learning by condition

Fig. 7  Violin plots showing immediate post-test scores by condition. 
Note. Dashed lines are means; purple dots are medians. *p < .05. **p 
<. 01. ***p < .001, two-tailed with Bonferroni correction

Fig. 8  Violin plots showing delayed post-test scores by condition. 
Note. Conventions are the same as in Fig. 6
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condition on students’ immediate post-test performance 
while controlling for performance on the pretest. The com-
plete ANCOVA table is shown in Table 2. The one-way 
ANCOVA revealed a significant difference in post-test 
performance across the three groups (F (2,59) = 4.57, p = 
.014, ηp

2 = .14; Levene’s test and normality checks were 
carried out, and the data met the assumptions).

We conducted post hoc pairwise analysis using the 
"supernova" package in R (version 2.5.6; Blake et al., 
2023) using pooled error variance. Post hoc pairwise 
comparisons of immediate performance controlling for 
pretest performance showed that the Drawing+Hand 
group significantly outperformed both the Static Slides 
group (t (59) = 4.34, padj <.001) and the Drawing Only 
group (t (59) = 2.53, padj = .042). There was no signifi-
cant difference between the Static Slides group and the 
Drawing Only group (t (59) = 1.98, padj = .157). (Note: 
the p-values were adjusted for multiple comparisons 
using Bonferroni.)

Delayed post‑test performance

Scores on the delayed post-test for each of the three condi-
tions are shown in Fig. 8. A summary of students’ immediate 
and post-test performance by condition is shown in Table 3. 
Descriptively, the ordering of the three groups remained the 
same as for the immediate post-test, with the Drawing+Hand 
group scoring the highest, and the Static Slides group the 
lowest. A one-way ANCOVA controlling for pretest perfor-
mance found no significant differences across conditions (F 
(2,59) =2.03 p = .140, ηp

2 = .06; Table 4).
Whereas the ANCOVA evaluated the data against the 

hypothesis that the group means of the three populations 
were identical, we were also interested in specific differences 
between particular groups. In some cases, post hoc tests can 
be powerful enough to find significant differences between 

group means even if the overall ANOVA has a p-value 
greater than the defined significance level (Hsu, 1996; Max-
well et al., 2017). Post hoc pairwise comparisons with Bon-
ferroni corrections while controlling for pretest performance 
were used to provide a more focused and powerful analysis 
of whether the Drawing+Hand group performed better than 
any of the other two groups. The analyses revealed a signifi-
cant difference between the Drawing+Hand group and the 
Static Slides group (t(59) = 2.88, padj = .017), but not between 
the Drawing+Hand group and the Drawing Only group (t(59) 
= 1.54, padj = .388), nor between the Static Slides group and 
the Drawing Only group (t(59) = 1.47, padj = .445). (Note: 
the p-values were adjusted for multiple comparisons using 
Bonferroni.)

Discussion

In Study 2, we used a brief intervention to teach students 
concepts related to probability distributions. Specifi-
cally, we created three versions of instructional videos: a 
Drawing+Hand video, being both dynamic and embodied; 
a Drawing Only video, being dynamic but not embodied; 
and a Static Slides video showing static, computer-generated 
images. We found that the Drawing+Hand video improved 
students’ immediate post-test performance and resulted in 
more accurate judgments of learning compared to the other 
conditions. Three weeks after the intervention, only the dif-
ference between the Drawing+Hand and the Static Slides 
group remained statistically significant.

This pattern of results provides evidence for the potency 
of presenting drawings in a manner that accurately reflects 
the process by which they were created, with a hand drawing 
dynamically over time. We hypothesize that drawing data 
distributions dynamically with a hand may direct attention 
more effectively over time to different components of the 

Table 3  Descriptive statistics immediate and delayed post-test performance for three conditions

Measure Static Slides (n = 24) Drawing Only (n = 23) Drawing+Hand (n = 16)

M SD M SD M SD

Immediate post-test score 11.77 3.44 12.93 2.94 14.59 2.40
Delayed post-test score 8.96 3.14 9.91 3.50 11.03 2.97

Table 2  ANCOVA results (Study 2, immediate assessment)

df MS F ηp
2 PRE p

Condition 2 0.10 4.57 .14 .13 .014
Pretest performance 1 0.19 8.51 .13 .14 .005
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data visualization, and may even give students more time to 
put these components together.

The finding that the Drawing+Hand group outperformed 
the Drawing Only group on the immediate assessment can 
be interpreted in two ways. First, it points to the possibility 
that the inclusion of the hand/body might play a unique role 
in facilitating learning from drawings. Although it is pos-
sible that both the Drawing+Hand video and the Drawing 
Only video were "embodied" in that they showed drawings 
that were indeed generated by a human hand, we maintain 
that the Drawing+Hand video was more embodied. The 
results of the immediate post-test suggest that additional 
embodiment can be beneficial to learning. Findings from 
the embodied cognition literature provides support for the 
speculation that viewing the human hand activates forms 
of cognitive processing that are not otherwise present (i.e., 
sensorimotor representations that include the bodily move-
ments of the instructor), resulting in better learning out-
comes (Wilson, 2002; see Risko & Gilbert, 2016, for an 
overview). This interpretation is also consistent with Mayer's 
multimedia learning principles, in which embodiment such 
as drawing with a visible hand is hypothesized to help learn-
ing, especially when it guides or activates helpful cognitive 
processes (Mayer, 2014).

However, an alternative interpretation, given that both 
videos are embodied to some degree, is that the presence of 
the hand primarily served to direct attention to the drawing 
process. Perhaps having the hand holding a pointy writing 
device is like having an additional arrow directing the view-
er's attention. If that is the case, similar learning benefits 
might also be achieved by, for example, having an enhanced 
version of the PowerPoint Slides in which a cursor moves to 
direct learners’ attention to specific parts of the drawings. 
This is the idea we tested in Study 3.

It is also worth keeping in mind that there was a differ-
ence between what we observed from the immediate assess-
ment and the delayed assessment. The Drawing+Hand 
group did not significantly outperform the Drawing Only 
group after three weeks on a delayed assessment as they did 
on the immediate assessment, though the overall pattern of 
means was similar between the two measures. There are two 
potential explanations for this.

First, this might simply be a result of insufficient power. 
The recruitment challenges imposed by COVID-19 hindered 
our ability to meticulously control and attain the desired 

sample size suggested by a priori power analysis. Our power 
analysis revealed that with a power of 0.8, our sample size 
was only sufficient for detecting a very large effect (f = 
0.43). Even if a delayed effect did exist, this study might 
be underpowered to detect such an effect, particularly if the 
effect size is smaller than that of a large effect.

Second, it is also possible that the effects of embodiment 
(over and above those of dynamic visualizations) are short-
lived. In general, studies should always consider whether 
the effects of pedagogical techniques would sustain after a 
delay. Further studies are needed to understand the effects of 
watching drawings after a realistic period of delay.

Neither the immediate nor the delayed assessment found a 
significant difference between the Drawing Only group and the 
Static Slides group. This is consistent with some findings in 
dynamic and static visualizations showing no clear benefits of 
dynamic visualizations over static visualizations (e.g., Tversky 
et al., 2002). However, there are studies that have found a sig-
nificant difference between these two types of visualizations. 
For example, Zhu and Grabowski (2006) found that dynamic 
visualizations benefited learners with low prior knowledge 
more than static graphs. Future research might consider look-
ing into how characteristics of the learners interact with the 
different efficacy of these two types of visualizations. We 
also note that the static slides we used were somewhat more 
“cleaned-up” and professional-looking than the drawings used 
in the other two conditions. The neatness of the static slides 
might also help learners, compensating for the missed effect 
from dynamic visualizations.

Study 2 also explored whether drawings (embodied or not) 
would lead to greater metacognitive judgments of learning. 
The Drawing+Hand group exhibited more accurate judgments 
of learning compared to the other two groups. Notably, partici-
pants in the Drawing Only and Static Slides groups tended to 
display more overconfidence in their learning compared to the 
Drawing+Hand group. Although this finding is largely explor-
atory, this suggests that the embodied benefits to learning may 
tap into mechanisms connected to metacognitive judgments 
of learning. Further investigations are warranted to eliminate 
alternative explanations and explore how judgments of learn-
ing might benefit from embodied drawings.

Together, the findings of Studies 1 and 2 offer promise 
to statistics education, by suggesting that students’ under-
standing of normal probability distributions can be improved 
with a brief drawing intervention that could be delivered 

Table 4  ANCOVA results (Study 2, delayed assessment)

df MS F ηp
2 PRE p

Condition 2 0.06 2.03 .07 .06 .141
Pretest performance 1 0.13 4.08 .06 .06 .048
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online, outside of class time, potentially providing students 
with a scaffold for future learning. This finding may also 
prompt instructors to consider the use of whiteboards and 
chalkboards available in their classrooms. Although clean, 
professional-looking visualizations similar to those found 
in our Static Slides condition might be common in statistics 
courses, perhaps the more “messy looking” dynamic and 
embodied drawings might offer more benefits in terms of 
student learning. These results should also inform instruc-
tors who create instructional videos. Going slightly beyond 
screen captured drawings by including visible hands may be 
worth the benefits to student learning.

Humans take in information from the environment simul-
taneously through multiple modalities, but this type of infor-
mation processing is not always the most efficient in learning 
scenarios. Sometimes, processing information from multiple 
modalities creates a split of attention, which sabotages learn-
ing (Ayres & Sweller, 2005). Nonetheless, our hand-drawing 
instructional video, instead of being harmed by its multimodal 
nature, helped learners process information. These findings 
pave the way for the development of innovative instructional 
approaches that leverage multimodal learning strategies (e.g., 
dynamic and embodied representations) to address various 
domains of knowledge acquisition.

One important lingering question from Study 2 is whether 
the presence of the hand merely served as a way to direct 
attention to parts of the drawing as it unfolded during the 
drawing processes. If the Drawing+Hand video was better 
than the Drawing Only video only because the hand was 
directing students' attention, the benefits achieved by the 
Drawing+Hand video might be similarly achieved with an 
instructional video that uses something other than a hand to 
direct attention.

Study 3

In Study 3, we explored whether the addition of a dynamic 
cursor to direct attention to specific parts of the computer-
generated images might improve the effectiveness of the 
Static Slides video. We again compared students’ learning 
among three instructional videos. One video was the same 
as in Study 2, namely, the Drawing+Hand video, which 
was found to produce the greatest learning in that study. 
The second video was similar to the Static Slides video 
from Study 2, but was “enhanced” to include a moving 
cursor. Because this change made the video more dynamic, 
we refer to this condition as the Dynamic Slides condition. 
We included this condition for two reasons: First, to test 
whether the role of embodied representations – in this 
case, the hand in the Drawing+Hand condition – was 
simply to guide students’ attention; adding the moving 
cursor would similarly guide attention, but without relying 

on an embodied representation. Second, this version of 
the video has higher ecological validity compared to the 
Static Slides video, because it mimics the way instructors 
actually use slides in educational settings – pointing, 
highlighting, moving a cursor, etc.

The third video was a control condition where students 
watched an unrelated statistics video. This control condi-
tion was added to assess the effect of answering the pretest 
questions before the post-test. The inclusion of this con-
trol condition allows us to examine whether either video 
(Dynamic Slides or Drawing+Hand) produced an effect 
larger than a testing effect (wherein people improve in their 
answers if they have been tested on similar concepts before; 
for a review, see Rowland, 2014). In this condition, students 
watched a video about regression in which no mention was 
made of probability distributions or the normal curve. (For 
more information about the videos, see the OSF wiki page: 
https:// osf. io/ af3p9/? view_ only= e0668 f936b 58457 7b2b5 
ffacb 66d6d 2f). See Fig. 9 for several screenshots from the 
Drawing+Hand and the Dynamic Slides condition.

We hypothesized that the Drawing+Hand group, whose 
video included embodied information, would perform better 
than the control group. We also expected the Dynamic Slides 
group to perform better on the post-test than the control group. 
Of main interest was whether the addition of a dynamic cursor 
in the Dynamic Slides would improve learning to the point of 
equaling that in the Drawing+Hand group.

Method

Participants

Participants were 103 undergraduate students taking an intro-
ductory statistics course at the same public research institution. 
Similar to the previous two studies, students were also taking 
the course online because of COVID 19. Eleven participants 
were excluded from the study based on the same predeter-
mined exclusion criteria as those used in Study 2, yielding 
a final sample of 92 participants (Drawing+Hand: n = 33, 
Dynamic Slides: n = 30, control: n = 29). Following the same 
criteria of the power analysis conducted in Study 2 (an α of 
.05, a power of .80), the obtained sample size of at least 29 
participants per group is adequate to detect a Cohen’s f of 0.34.

The sample reflected the diversity of the campus, with an 
ethnic composition of 31.52% Asian, 1.09% Black or Afri-
can American, 21.74% Hispanic or Latino, 31.52% White, 
and 14.13% multiracial or other. Although the sample was 
recruited from a course with the same name as in Study 
2, this course used a different textbook and was taught by 
a different instructor. As in the previous studies, students 
volunteered to participate in the study in exchange for extra 
credit and did not receive any other forms of compensation.

https://osf.io/af3p9/?view_only=e0668f936b584577b2b5ffacb66d6d2f
https://osf.io/af3p9/?view_only=e0668f936b584577b2b5ffacb66d6d2f
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Measures

Pretest The pretest contained six questions designed to 
assess participants’ existing knowledge of normal probability 
distributions (see Appendix E). Four questions in the pretest 
were the same as in the pretest from Study 2. Two additional 
questions were added to ask students to further explain their 
answers and probe their thinking. The first five questions of 
the pretest were also included in the immediate post-test.

Accuracy of judgment of learning. Similar to Study 2, par-
ticipants’ accuracy of judgment of learning was calculated 
by the bias measure (Griffin et al., 2009; Maki et al. 2005). 
Because the control group did not learn about the normal dis-
tribution, the judgment of learning measure was administered 
only to the Dynamic Slides group and Drawing+Hand group.

Immediate post‑test The immediate post-test contained 13 
questions in total (see Appendix F). We revised the post-test 
based on how students answered the questions in Study 2, 
by removing questions that were ambiguous or too difficult. 
The questions were shown to students in the same fashion 
as before. Cronbach’s alpha for the 13 questions was .73.

Scoring of tests

Three trained coders, blind to each participant's experimental 
condition, scored 20 participants’ responses on the pretest 

and the immediate post-test independently from each other. 
For these 20 participants, each question was randomly 
assigned to be scored by two of the three coders. The 
Krippendorff’s Alpha was 0.92, which indicated good 
interrater reliability. The three coders then divided the 
responses into three sets and coded the rest of the responses 
independently, without knowing the participants’ condition 
assignments.

Results

Pretest performance

The average accuracy of the pretest for all groups was 56% 
(3.38 out of 6 points). The control group scored 53% (SD = 
0.28). The Dynamic Slides group scored 59% (SD = 0.30). 
The Drawing+Hand group scored 57% (SD = 0.26). Partici-
pants’ performance on the pretest did not differ significantly 
across groups (F(2,89) = .34, p = .712, η2 = .01).

Accuracy of judgment of learning

Two participants were removed from this analysis because 
they did not provide a valid number for their self-rated 
understanding of the video. The distribution of partici-
pants’ accuracy of judgment of learning for the Dynamic 
Slides group and Drawing+Hand group is shown in Fig-
ure 10. The Dynamic Slides group and Drawing+Hand 

13:48: “a common 

misunderstanding is to 

think the probability of 

getting a number higher 

than the mean is always 

0.5”

13:55: “this is true only 

when the distribution is 

normal”

14:07: “If the distribution is 

skewed to the left, the 

probability… is less than 

0.5”

Drawing+

Hand

Dynamic 

Slides

Fig. 9  Screenshots of videos from the two experimental conditions for Study 3. Note that, in the Dynamic Slides condition, the position of the 
cursor varies across the three screenshots (the control condition was not included because the narration was completely different)
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group did not differ significantly in their accuracy of judg-
ment of learning (t(60) = 0.77, p = .444).

We also tested, using one-sample t-tests, whether each 
group’s average judgments of learning were significantly dif-
ferent from 0. The Dynamic Slides group significantly over-
estimated their learning (t(29) = 3.74, p < .001), so did the 
Drawing+Hand group (t(31) = 4.11, p < .001).

Immediate post‑test performance

We conducted a one-way ANCOVA to evaluate the impact of 
condition on students’ post-test performance while controlling 
for their pretest performance by including it as a covariate. 
There was a significant group difference on the post-test (F(2,88) 
= 4.48, p = .014, η2 = .12) (Fig. 11; Table 5).

Post hoc pairwise comparisons controlling for pretest 
performance revealed that students in the Drawing+Hand 
condition scored higher than those in the control condi-
tion (t(88) = 4.86, padj < .001), but did not differ signifi-
cantly from those in the Dynamic Slides condition (t(88) = 
1,73, padj = .264). The Dynamic Slides group also outper-
formed the control group (t(88) = 3.08, padj = .008). (Note: 
the p-values were adjusted for multiple comparisons using 
Bonferroni.)

Discussion

In Study 3, both the Drawing+Hand and the Dynamic 
Slides groups exhibited superior learning outcomes com-
pared to the control group, and did not significantly dif-
fer from one another. The findings from Study 3 did not 
provide sufficient evidence to support the notion that hand 
drawing with a visible hand possesses a unique advantage 
over dynamic slides with a moving cursor. This finding sug-
gests that at least in this learning context, a learning benefit 
can be obtained with either dynamic drawings with a visible 
hand or through the use of dynamic slides, where the inclu-
sion of a moving cursor and highlighting potentially serves 
to direct the learner’s focus.

However, it is also possible that the moving cursor acti-
vated a representation of the hand. When people see a cur-
sor moving in their everyday life, it’s moving because their 
hand is moving to control the cursor. Thus, in the Dynamic 
Slides condition, the effect of embodiment may have been 
through this pathway. Future studies might explore this 
hypothesis with a condition (e.g., highlighted dynamic 
slides) that is less likely to activate the representation of 
the hand.

Moreover, Study 3 was only powered to detect large effects, 
so we cannot exclude smaller differences between embodiment 
and dynamic slides. If such differences exist, larger sample 
sizes and more sensitive measures may be required to sort 
out the importance of the drawing hand and, more generally, 
embodied representations.

Fig. 10  Accuracy of judgment of learning by condition. Conventions 
are the same as in Fig. 6

Fig. 11  Violin plots showing post-test scores by condition. Conven-
tions are the same as in Fig. 6

Table 5  ANCOVA results (Study 3)

df MS F ηp
2 PRE p

Condition 2 0.20 4.48 .12 .09 .014
Pretest Performance 1 1.77 77.33 .47 .47 <.001
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General discussion

Collectively, the three studies presented in this paper shed 
light on the efficacy of drawing in promoting higher-order 
cognitive processes. By comparing what is learned from 
watching a hand draw against other dynamic visualizations 
(e.g., no-hand drawings, computer-generated animations) 
and static drawings, these studies advance our understanding 
of the practical value of drawing during instruction. Study 
2 points to the importance of the hand in helping learners 
reap the benefits of dynamic drawings. Study 3 points to the 
attentional role of drawings; a cursor moving around has simi-
lar benefits when compared to a dynamic hand drawing. It is 
worth noting that drawing controls the timing of the explana-
tion. Because in both Study 2 and Study 3 the two experimen-
tal conditions shared the same audio track that was recorded 
when the instructor was drawing, the movement of the cursor 
is also controlled by the hand drawing. In addition to contrib-
uting to our basic understanding of the cognitive benefits of 
observing drawing, our findings also have a practical utility in 
demonstrating that misunderstandings of the normal distribu-
tion can be remedied using relatively brief videos delivered 
outside the flow of normal classroom activities.

Part of our motivation for these studies is to exam-
ine pedagogical techniques already employed by many 
instructors (drawings, computer-generated visualiza-
tions). Instructors often have intuitions about the impor-
tance of dynamic visualizations that unfold over time. 
Some instructors use computer-generated visualizations 
but reveal parts of them over time in a "step-by-step" man-
ner, closely mimicking continuous drawing. How do these 
teaching materials compare to our experimental conditions 
in their efficacy? Given that the drawing scenario is harder 
and less clean to implement in the classroom, teachers 
often face the trade-offs between ease of implementation 
and student improvement. Study 2 and Study 3 provided 
some initial clues into this challenge, but future research 
could future delineate ideal trade-offs.

Limitations and future directions

There are some limitations that the current three studies could 
not address. First, we note that our specific sampling method, 
although allowing researchers to examine students’ knowledge 
after a certain amount of instruction, has several implications. 
First, the samples for these studies consisted of mostly psy-
chology students from a specific institution. Misunderstand-
ings regarding probability distributions might be different in 
other populations, such as community college students; they 
may be either more severe/prevalent, if students already arrive 
at statistics classes with lower preparation, or less severe, if 

instructors dedicate more time to cover these topics or can 
address more individual misunderstanding in smaller classes. 
Moreover, even if the level and forms of misunderstanding 
prove to be similar across diverse populations, we cannot at 
present determine whether the intervention used here would 
prove as effective for such diverse groups of students. Future 
studies should explore these questions. Lastly to this first 
major aspect of having opportunistic sampling by using extra 
credit to recruit students, we caution other researchers pursu-
ing similar methods of recruitment to make sure the expe-
rience of participating in this research provides educational 
benefits and students are provided with other options of gain-
ing the extra credit if they opt out.

Another aspect of the limitations is that, due to constraints 
imposed by the COVID-19 pandemic, many students in our 
sample did not have a disturbance-free workspace for watch-
ing the videos (e.g., they reported being in a noisy household 
where they could not hear the audio clearly). For this reason, 
we excluded students based on their self-reported level of 
disturbance, but this exclusion criterion might have biased 
our results in some way (e.g., causing excessive exclusion 
of students from a particular socioeconomic status that may 
be correlated with both less privacy in one’s household and 
lower college preparation). Although future researchers 
might learn much by replicating our approach in a more 
controlled environment, it is also interesting to understand 
how the natural variation that occurs across students’ remote 
learning environments might impact their learning. Indeed, 
future interventions should be designed to fit the circum-
stances in which they are experienced by students.

Conclusion

This paper reports on a set of three studies that identified 
students’ current struggles with the normal probability dis-
tribution and investigated the effectiveness of drawings and 
other visualizations as scaffolding tools to help students 
better understand that topic. This research offers valuable 
insights into the practical application of drawing as a cog-
nitive tool: to put it in the simplest way, dynamic drawing 
with a visible hand produced better learning outcomes than 
both static slides and dynamic drawing without a visible 
hand, but not significantly different from dynamic slides 
(i.e., a cursor moving around otherwise static slides). The 
findings suggest drawing is a potent tool in multimedia 
learning but its benefit might be achieved similarly by 
dynamic slides, through which learners are engaged by 
animation and highlighting. These findings have important 
implications for instructional practices, emphasizing the 
relevance of incorporating drawing as a powerful tool to 
facilitate comprehension and enhance learning outcomes.
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