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ABSTRACT

Students learn many concepts in the introductory statistics course, but even our most successful students
end up with rigid, ritualized knowledge that does not transfer easily to new situations. In this article we
describe our attempt to apply theories and findings from learning science to the design of a statistics
course that aims to help students build a coherent and interconnected representation of the domain.
The resulting practicing connections approach provides students with repeated opportunities to practice
connections between core concepts (especially the concepts of statistical model, distribution, and random-
ness), key representations (R programming language and computational techniques such as simulation and
bootstrapping), and real-world situations statisticians face as they explore variation, model variation, and
evaluate and compare statistical models. We provide a guided tour through our curriculum implemented
in an interactive online textbook (CourseKata.org) and then provide some evidence that students who
complete the course are able to transfer what they have learned to the learning of new statistical techniques.
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In the typical introductory statistics course, students are intro-
duced to a great number of concepts: variance, z-score, normal
distribution, p-values, ANOVA, t-test, and many others. At the
end of the course, however, many students have difficulty appro-
priately transferring what they have learned to new situations.
Gigerenzer (2018) argued that students and researchers alike
end up practicing statistics as a set of rituals, a series of actions
repeatedly performed in a prescribed order without judgment.
Triggered by a certain set of conditions, our students happily
“run the analyses” and report the results, all without a deep
understanding of why they did what they did, or what the results
mean.

As learning scientists who also teach introductory statistics,
we embarked several years ago on a project to apply what we
know from research on learning to the teaching of statistics,
and in particular on how to support students’ development of
deep understanding and transferable knowledge. Many of our
students score well on the test but are not able to apply what
we have taught them to new situations. We know from research
on expertise that connecting problems and procedures with the
core concepts of a domain makes knowledge more coherent, and
therefore more flexible and transferable (e.g., Bransford, Brown,
and Cocking 1999; Lachner, Gurlitt, and Nuckles 2012; Thagard
2007). Our plan was to first figure out what the core concepts
of the domain should be (i.e., those that would be most fruitful
for novices), and then to develop a pedagogical approach that
would help students use these concepts to interconnect their
knowledge of statistics.

Complicating our plan was the fact that statistics itself is
undergoing a massive transformation. Modern statistics has

moved beyond the assumptions and mathematical approxima-
tions of the last century; it has become a computational science
(e.g., Nolan and Temple Lang 2010), gradually replacing tools
such as the normal distribution with techniques such as simula-
tion, randomization, and resampling (e.g., Hesterberg 2015). We
also have seen a shift from an emphasis on Null Hypothesis Sig-
nificance Testing (NHST) to the construction and evaluation of
statistical models (Rodgers 2010). Some textbook authors have
started to rethink the curriculum in light of these developments
(e.g., Tintle et al. 2020; Lock et al. 2017; Judd, McClelland, and
Ryan 2017; Kaplan 2017). The rise of data science, a more mul-
tidisciplinary approach to data, along with the proliferation of
readily accessible data has also pushed the introductory statistics
class to change.

Many statisticians argue that we should stop teaching NHST
and/or mathematical approximations altogether (e.g., Cohen
1994; Cobb 2007; Cumming 2014; Gigerenzer 2018). The cri-
tique is not just leveled at the teaching of statistics, but also
to statistics as practiced by researchers. Nature published a
comment with 800 signatories calling for an end to these statis-
tical practices by scientists (Amrhein, Greenland, and McShane
2019).

These recent developments are important and have shifted
our emphasis from the traditional topics of introductory statis-
tics to a new focus on modeling and computational methods.
At the same time, however, we worry that statistics educators
will reform the content of the introductory course, but not the
pedagogy. As psychologists, we see a very real possibility that
ritualized learning of NHST (Gigerenzer 2018) will simply be
replaced by a new set of rituals, ones that turn the concept of
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bootstrapping, for example, into a flow chart that tells students
what to do, step-by-step, but that does not result in deep under-
standing. If we are going to redesign the introductory course
to emphasize modeling and computational approaches, we also
need a theory of pedagogy that leads to understanding rather
than ritualization.

In this article, we describe the project that has resulted from
our efforts. We base our approach on a clear theory of pedagogy,
adapted from current thinking in the learning sciences, that
we call the practicing connections framework (Fries et al. 2020;
Son, Ramos et al. 2018). The practicing connections framework
posits that to produce coherent transferable learning, students
must practice making connections between core concepts, rep-
resentations, and the world (i.e., contexts and practices involved
in applying those concepts; cf. National Academies of Sciences,
Engineering, and Medicine 2018). In the first part of this article,
we propose what the core concepts and representations should
be. If not NHST, the normal distribution, and ritualized proce-
dures, which core concepts, representations, and connections to
the world should students practice making in an introductory
course?

The second part of this article is a guided tour through
our introductory statistics curriculum in which we demon-
strate what our practicing connections pedagogy looks like
as we put it into action. Our project is embodied in a free
interactive online textbook called Introductory Statistics and
Data Science: A Modeling Approach (Son and Stigler 2017-
19), available for preview at CourseKata.org. This interactiv-
ity, in which we integrate modeling concepts with embed-
ded coding exercises and questions with immediate feedback,
differentiates our book from other textbooks that have been
developed around modeling (e.g., Judd, McClelland, and Ryan
2017; Kaplan 2017). This feature also provides researchers and
developers with a constant flow of data, based on more than
1200 embedded assessments, which we can use to improve
the effectiveness of our book. This project is part of a larger
effort, called the Better Book Project, to modernize research
and development in education (see Stigler et al., in press).
In brief, we are trying to develop a new approach to the
development of curriculum materials in which researchers,
designers/developers, and instructors work together to pro-
duce continuous incremental improvements to an online
book.

In the third part of the article, we present some preliminary
data, which we find encouraging. In particular, we ask, can we
see any evidence of the transferable knowledge we are trying
to produce in our students? Although the data we present are
from a sample of UCLA pre-psychology majors, our ultimate
interest is in all students, not just advanced students or those
pursuing majors in statistics or STEM fields. Thus, we are cur-
rently implementing our online book in a variety of settings,
mostly in California, ranging from the University of California
to California State University to community colleges. We espe-
cially want to find ways of facilitating deep learning and flexible,
transferable knowledge among students who have been deemed
“underprepared” for quantitative courses, and to prepare all
students for future courses in advanced statistics should they
decide to take them.

Practicing Connections: The What

Transfer can be broadly defined as applying old knowledge
to new situations (e.g., new contexts, new concepts, new
representations; see Barnett and Ceci 2002 for a taxonomy of
transfer). Research shows, however, that transferable learning is
often difficult to achieve. Many statistics educators would agree,
based on their own experience, that students who can easily
solve problems that are similar to what they were exposed to
during learning have difficulty solving problems that deviate sig-
nificantly from the ones they were taught to solve (e.g., Bassok,
Wu, and Olseth 1995; Son et al. 2018).

Research in the learning sciences has demonstrated that
flexible transfer is best supported when knowledge is coherent
(for a review, see Fries et al. 2020). If the goal of learning and
teaching is to create coherent knowledge structures in novices,
then students should not spend their time accruing bits of
disconnected information (Let’s learn about the median! Make
aboxplot! Calculate a z-score!). Instead, the pedagogy should be
focused on helping students make appropriate connections that
can help organize the domain.

According to our practicing connections hypothesis, stu-
dents’ knowledge will become more coherent to the extent that
they practice connecting core concepts, key representations, and
situations in the world. But which core concepts should they
connect? Which representations? What is the range of situations
and contexts we want students to include in their knowledge of
the domain? These are the questions we start with.

Core Concepts

A well-known finding from research on expertise is that experts
“see the structure” of a domain. Expert knowledge comprises
fewer concepts that are highly interrelated compared to student
knowledge (Lachner, Gurlitt, and Knuckles 2012). This allows
experts to look at problems that appear to novices as unrelated
and see them as embodying a common underlying structure
(Chi, Feltovich, and Glaser 1981). Although we can get a lot
of help from domain experts in defining the core concepts for
a domain, the core concepts that are accessible and helpful to
novices may not overlap completely with those used by experts.
Our goal is to choose concepts that are useful to novices as
they build coherent knowledge structures that won’t need to be
“unlearned” later. (For example, see McGowen and Tall 2010,
for a discussion of how students’ initial interpretation of the
negative sign to mean “take away” interferes later with their
understanding of negative numbers, and must, therefore, be
“unlearned.)

The three core concepts we selected for our introductory
statistics course are modeling, distributions, and randomness.
Modeling, of course, is foundational for statistics and data
analysis, yet often it is thought of as an advanced topic, not
suitable for beginners. We introduce the concept of statistical
model at the very beginning of our course, and continually help
students connect the tools, methods, and ideas they are learning
to the overall framework, DATA = MODEL + ERROR. Our
second core concept is distribution, which we subdivide into
three types: samples, populations (what we also call the Data
Generating Processes, or DGPs), and sampling distributions.



Our third core concept is randomness. Cognitive scientists have
long pointed out that people intuitively consider causality and
ignore information that does not lend itself to causal interpre-
tation (e.g., Tversky and Kahneman 1977). We attempt to train
students to think of randomness as a data generating process
that can cause distributions of data.

Representations

In order to support the making of connections, the core concepts
must be embodied in a set of representations that are highly
generative. We use a variety of representations in our curricu-
lum, but we focus throughout on three that specifically support
the connections that create coherent knowledge of statistics.
Research on comparison (Namy and Gentner 2002), symbolic
reasoning (Son, Smith, and Goldstone 2011), and math manip-
ulatives (Uttal, Scudder, and DeLoache 1997) shows that tying
disparate instances to one stable, repeating, relatively abstract
instance leads to flexible generalization.

The first representations we emphasize are graphical displays
of data such as histograms, boxplots, scatterplots, and so on. We
want students to be able to spot patterns in data, to connect
raw data in tables to specific points on graphs, and to con-
nect features of graphs to core concepts such as models and
randomness.

The second representational system we use is R ( taking
advantage of the many innovations of Project MOSAIC; Kaplan
and Pruim 2019; Pruim, Kaplan, and Horton 2017) to integrate
modern computational methods such as simulation, random-
ization, and bootstrapping into our course. Our goal is not to
teach programming, but instead to use simple R functions as a
notational system for representing abstract statistical concepts,
manipulating data, and also as a way of creating publication-
ready graphs to represent statistical ideas. Our students start out
thinking of R as just a set of commands that do things, and in
fact this full set of commands is given to them as a one-page
“cheatsheet”

Upon hearing about our integration of R throughout the text-
book, many people have expressed concern that the additional
cognitive load imposed by learning R will have a negative impact
on students’ learning and engagement. In fact, we have reason to
believe the opposite. Rather than extraneous (or unnecessary) to
the learning task, we argue our use of R is germane load, actively
facilitating the learning of complex and often abstract concepts
(Sweller, Van Merriénboer, and Paas 1998). Using R to simulate
a population or to shuffle data, for instance, allows students to
gain firsthand experience of these abstract statistical techniques
as they become concrete through the manipulation of code. And
while many students do indeed begin wary about learning R
(as reported on pre-course surveys), their feelings about R end
up significantly more positive at the end of the course (Tucker,
Shaw, Son, and Stigler, Under review).

Finally, though we make minimal use of mathematical nota-
tion, we do rely heavily on the notation of the General Linear
Model (GLM) as a means of connecting together topics, such as
ANOVA and regression, that students typically see as unrelated.
We ease into the notation by starting with word equations. For
example, we first teach students to represent a relationship by
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writing:
[Outcome variable] = [Explanatory variable] + other stuff

We then transition them to writing the following GLM equation,
all the while connecting both word equations and GLM notation
to the concept of DATA = MODEL + ERROR:

Yi=bo+biXi+e

It is worth pointing out that we do not solely rely on algebraic
expressions and equations to represent statistical ideas, despite
the fact that most traditional courses do. Our reason for this
is twofold. First, many ideas expressed algebraically are more
convincingly communicated to novices as computational ideas
instantiated in R code. Second, many of our students — and
this seems true across a wide diversity of students—do not
“own” algebra enough for it to help them understand statistical
ideas. For these students, just the presentation of mathemati-
cal derivations may induce them to engage in calculations or
activate negative emotions and thus interfere with thinking and
understanding (Givvin, Stigler, and Thompson 2011; Geller,
Son, and Stigler 2017).

The World

It isn’t enough to have a set of core concepts and representations
connected to each other. These, in turn, must be connected to
different types of contexts in the world, which are embedded
within a goal structure that defines what it means to “do statis-
tics”

Goal Structure

We organize and frame our course as a narrative about the
practice of doing statistics. The narrative starts with the idea that
statistics is all about making sense of variation. We divide our
course into three main parts, corresponding to the main goals of
statisticians when analyzing data: exploring variation, modeling
variation, and evaluating models.

In the first part of the course, students use R to explore
variation visually. They apply the concept of distribution as a
lens for looking at variation (Wild 2006), and are encouraged to
think of distributions as a new kind of entity, similar to the way
we might shift our attention from looking at individual birds
to see the behavior of flocks. Students also are encouraged to
look for patterns in data that might provide clues about the data
generating process (DGP) that gave rise to variation in data.

In the second part of the course, we introduce the concept of
statistical model and begin developing the idea that we can use
mathematical functions as models that summarize distributions
and allow us to make predictions of future cases. No matter how
complex the model, it always generates a predicted score on an
outcome variable based on one or more explanatory variables. In
the simplest model, the function generates the same score (e.g.,
the mean) regardless of the value of an explanatory variable.
Importantly, constructing a statistical model gives birth to error,
the part of variation that has not been explained by our model.
The goal of modeling is to reduce error, and students learn to fit
more complex models as a means of reducing error.
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Finally, in the third part of the course, we tackle the prob-
lem of sampling variation and introduce students to tools for
comparing and evaluating alternative models of the DGP. We
practice generating data in different ways (randomization, boot-
strapping, and simulation) and examine the sampling variation
that results from these computational methods. We use the
resulting sampling distributions to estimate confidence intervals
and provide evidence for/against different models of the DGP.

Contexts

Although in the section above we explained these goals and
practices abstractly, in the student-facing instructional materi-
als, these practices are always embedded in different contexts
in which these goals are pursued. Context in statistics is often
thought of as just the content of the problem — students’ finger
lengths, GDP of countries, mercury levels in lakes, and so on.
In our practicing connections framework, we distinguish two
ways that context can work to facilitate connections. The same
context can be used to connect two different kinds of concepts
(e.g., using the same data set about student’s finger lengths to
demonstrate both group and regression models), and the same
concept can be instantiated in different contexts (e.g., fitting a
regression model to data from students versus countries). We
call the first type connecting contexts, because these contexts
serve as the connecting glue for different concepts, and the
second type expanding contexts, because these contexts help
students expand their application of a concept.

In our online book, we focus on just a few connecting con-
texts so that students can use superficially similar instances
to help them make structural distinctions (Sagi, Gentner, and
Lovett 2012). For example, early on in the textbook we explore
variation in students’ thumb length. Later we refer back to that
same context, modeling that familiar variation and evaluating
those models. We continually refer to a model where we use a
student’s sex to predict their thumb length (a group model) to
build up connections between different measures of model fit
such as Sum of Squares Model and F ratio, and to distinguish
those concepts from parameter estimates (e.g., b;). We also use
the same thumb length scenario to introduce regression models
by using students’ heights to predict their thumb lengths.

To the surprise of many first time instructors, the idea of a
categorical variable is often hard for students to keep in mind.
When the context changes, they often confuse the variable (e.g.,
diamond cut quality) with the levels of a variable (e.g., fair, good,
ideal). This is perhaps reasonable given there are also situations
where the name of the variable (e.g., treatment) is the same as
one of the levels (e.g., treatment vs. control). Repeated use of a
familiar context helps to ground students’ understanding of the
role of a categorical variable in a group model. Thus, students
have multiple strategies when faced with the question, “Is this
a categorical variable?” Not only can they ask themselves, “Is it
a variable or a value?”, they can also ask, “Is it more like sex or
more like male/female?”

At the same time, we also identified key features of expanding
contexts that students should be exposed to in order to prevent
limiting their understanding to just a few familiar concrete
examples. In our book, and especially in class, we seek to expand

the range of contexts to which students’ can connect their devel-
oping knowledge of statistics.

For example, especially in majors such as psychology, stu-
dents are used to thinking about cases as individual people
and have more difficulty conceptualizing other entities as cases.
We made sure to include specific expanding contexts such as
non-people (e.g., lakes, movies, companies, countries) and to
address mistaken interpretations that arise from assuming that
the cases are individual people. After creating a scatterplot that
shows a positive relationship between consumption of alcoholic
spirits in a country and their happiness index (combining data
from the World Health Organization; Kim, Ismay, and Chunn
2018, and the Happy Planet Index; Lock 2017), students may
mistakenly believe that individual people who drink more are
happier. We use these expanding contexts to address these types
of misconceptions.

In summary, we can think of students’ growing understand-
ing like a rubber band stretched around a group of nails on a
wooden board. With each nail representing a distinct context,
we aim to stretch the rubber band, over time, to encompass
as many contexts as possible. Expanding contexts serve this
purpose and are the engine that drives flexibility and transfer.
On the other hand, we must at the same time strengthen the
rubber band itself so that it doesn’t break as we stretch it to
encompass more varied contexts. Connecting contexts play this
role, strengthening understanding and preparing it to stretch.
Both ideas are critical to our design.

Practicing Connections: How Concepts are Developed

Having laid out the components we want students work-
ing to connect—the core concepts, key representations, and
contexts—we can now turn to the how of practicing connec-
tions. What does the pedagogy look like that we hope will
support students’ developing understanding of statistics? How
do we implement this pedagogy in Version 1.0 of our book?
To answer these questions, we will take a single core concept
(DATA = MODEL + ERROR), and show how it is developed
throughout the book.

Exploring Variation

We start the book by moving from variation in the world to
variation in data. This part of the book (Chapters 2-4) generally
takes 2-3 weeks in a semester-long course, about a chapter per
week. Although our book does not focus on measurement or
research design, we do try in Chapter 2 to make sure students
understand where data come from, and how data get organized
into data frames (where rows are cases and columns are vari-
ables). The rest of the book is about understanding variation in
data and considering different sources of variation (including
real characteristics of the DGP as well as variation induced by
the data collection process). Starting in Chapter 3, we use R to
introduce various kinds of graphs and the five-number sum-
mary as tools that help us see patterns of variation. Distribution,
a core concept in our approach, is the primary conceptual lens
through which we view variation (Wild 2006). It is a way to
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Figure 1. Sample R plots students created to explore the distribution triad. When exploring variation, students focus on connecting two types of distributions (sample
and DGP), representing possible explanations with informal models instantiated as word equations, and exploring those explanations with data visualizations (e.g., faceted
histograms). They further explore randomness as a DGP by actually generating data with a random process (using an R function, shuffle) which breaks any relationship
between the explanatory variable (Sex) and the outcome (Thumb) by shuffling which Thumb length goes with which Sex group. The histograms in blue visualize six
independent examples of shuffled data. Does the empirical sample look similar to these shuffled samples? Considering this question puts students on the path to

understand the logic of sampling distributions, far ahead of their formal introduction.

see the forest for the trees, the flock instead of birds, the traffic
instead of cars.

We can learn a lot by examining distributions of sample data.
Usually, however, our interest goes beyond the variation in the
data; we want to explain that variation. Why is there variation?
What caused it? How can we predict it? These questions reveal
that the goal of statistics is to know something about the data-
generating process (or DGP) or the population (the long run
result of a DGP). When we examine distributions of data, we
do so to help us understand the DGP that caused that variation
(see Figure 1 for how the sample and DGP connect). These two
kinds of distributions (data and the DGP) make up two-thirds of
what we refer to as the distribution triad. (Later, in the evaluating
models part of the course, we will formally bring in the third
kind of distribution, the distributions of statistics, or sampling
distributions).

In Chapter 4 we introduce an intuitive definition of what
it means to “explain variation” We can say that one variable
explains some variation in another variable if knowing a case’s
value on the first variable helps us to make a slightly better
guess about what that same case’s value on the second variable
might be. For example, sex explains variation in thumb length
because knowing a student’s sex helps us make a slightly better
prediction of their thumb length. Students learn to “see” this idea
by looking, for example, at the faceted histogram in the lower
left of Figure 1. Just by visualizing the data, students have the
intuition that our predicted value for a male student’s thumb

length should be a little bit bigger than our prediction for a
female student.

Even before we introduce the formal idea of a statistical
model, we begin to build on our intuitive definition of “explain,”
teaching students to write word equations to express informal
models. Students see that knowing someone’s sex can help to
predict their thumb length but they also see that there is a lot of
variation still unexplained by sex. We teach students to represent
these ideas by writing word equations such as Thumb = Sex +
other stuff. (Later we will turn “other stuff” into the more formal
concept of “error”

Similarly, we help students construct an informal idea of what
sampling variation looks like, and why it’s important, in the
beginning of the book, well before we get to the formal concept
of sampling distributions. Students see the relationship between
Sex and Thumb length in sample data (see the faceted histogram
on the left of Figure 1). We then ask them, if we took another
sample of students, do you think the graph would look the same?
Most agree that it would be similar, but not exactly the same.
This naturally leads to the insight that a relationship we observe
in our sample may not actually exist in the Data Generating
Process (represented at the top of Figure 1); it may just be a result
of sampling variation.

At this point, we bring in another of our core concepts, the
concept of randomness as a process. Students use the shuftle()
function in R (part of the mosaic package; Pruim, Kaplan, and
Horton 2017) to break the relationship between Sex and Thumb
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Figure 2. When “modeling variation,” concepts explored previously are now formally modeled with the general linear model. We have overlaid the best fitting sample
statistics on top of the R plots students created as they added a quantitative component to their understanding of models in the distribution triad. Students connect their
word equations and R code for visualizations with new R code for model fitting, GLM notation, and the best fitting estimates.

length, generating a new data set in which values for the two
variables are randomly paired. They examine the results of
these randomized data sets to explore how different randomly
generated samples could look from one another. Finally, they
compare the actual data (e.g., histograms of male and female
thumb lengths) to the randomly generated histograms (e.g.,
thumb lengths that have been shuffled between two groups),
and try to judge whether the actual data stands out from, or
fits right into, the randomly varying samples. In Figure 1, we
represent these shuftled samples in the bottom right corner, the
same place that sampling distributions will go when they are
formally introduced later in the course. Even though students
have not fit models or calculated anything at this point in the
textbook, students begin to explore the role of randomness in
figuring out which DGPs could have produced our sample.
Using intuitive and informal ideas as a foundation on which
to later build understanding of formal statistical concepts is a
feature of our pedagogy that we carry throughout the book. Even
though students have not calculated any statistics or fit any mod-
els yet at this early stage in the course, we already are introducing
students to core concepts such as model and sampling variation.
In this way, we are helping students to prepare conceptual “slots”
in which to put the more abstract and formal ideas that come

later in the book. They also will have started to become aware
of a problem for which formal models will ultimately provide
a solution—the evaluation of one sample distribution in the
context of multiple randomly generated distributions.

Modeling Variation

In the second part of the book, we move from exploring vari-
ation to modeling variation. This part of the book (Chapters
5-8) takes about a week per chapter, with more time spent
on Chapter 7 (1-2 weeks). In Chapter 5, we introduce the
formal concept of statistical model, starting with the mean of
a quantitative variable, a model often referred to as the empty
model. Interestingly, while most books teach the mean as one ofa
number of descriptive statistics, we introduce it as a model. Prior
to introducing the mean as a model, we do not have students
calculate any statistics (apart from those required for the five-
number summary).

Just as before, although our focus in this part is on construct-
ing models from data, we always keep in the forefront the idea
that what we are trying to model is the DGP that produced the
data (depicted at the top of Figure 2). Thus, we introduce the



terms statistic and parameter, stressing that the arithmetic mean
we calculate from our data is a statistic, and that statistics are
used as imperfect estimates of parameters. Parameters must be
estimated because, as we have seen, we have no way to directly
measure the DGP.

We explore the properties of the mean in the context of “the
mean as a model” rather than more traditionally as a measure
of central tendency. We advance the idea that the mean is
often the best estimate we have of the actual population mean
(the mean of the DGP), and the best predictor of the value
of a subsequent observation. Because the prediction is almost
certainly wrong, it is natural to introduce the concept of residual
as a way to calculate, for each data point, how far off the model
prediction is. This emphasizes the mean’s special property —
that it uniquely balances the negative and positive residuals. In
Chapter 6, we then introduce statistics such as sum of squares,
standard deviation, and variance as ways of aggregating the
residuals to indicate how much total error there is around our
model.

In the context of this simple model, we begin to develop in
very concrete terms the basic idea behind statistical modeling:
DATA = MODEL + ERROR. In the distribution (of data), each
score can be expressed as a combination of two components: the
mean (as a model) and a deviation from the mean (error). In a
specific context, we can present it as Thumb = mean + error (a
developmental step beyond our previous formulation, Thumb =
other stuff). We can represent this idea using simple mathemat-
ical notation, the notation of the General Linear Model (e.g.,
Y; = bo+e;). We connect these representations to the idea of the
empty model, one with no explanatory variable. This is further
supported by the R code, Im(Thumb ~ NULL, data = Fingers).
We also use GLM notation to distinguish the model fit to the
sample from the empty model of the DGP (e.g., Y; = o + €; in
the DGP part of Figure 2).

The sum of squares (SS) as a measure of error is related to
the larger goal of explaining variation in some outcome variable,
or, in a complementary fashion, reducing error variation. The
mean gives us a place to start because the error measured as SS
has already been reduced as much as possible. Any variation
due to explanatory variables is still part of the error term in
this simplest of models. Adding explanatory variables into the
model can reduce this error. Although the models we explore
next are more complex than the empty model, they are still quite
simple, adding in a single explanatory variable. We generally call
them “complex models” to distinguish them, relatively, from the
simpler, empty model.

In Chapter 7, we add a grouping variable to our statistical
model (e.g., Thumb = Sex + error). Using the notation of the
general linear model, we represent this new model as the mean
of one group (bp) plus the increment to be added to get the mean
of the other group (b). Thus, students learn to connect the GLM
equation Y; = by + b1 X; + e; to a two-group model where
X; represents whether a case (i) belongs to the second group
or not (coded 1 or 0, respectively). For example, each student’s
thumb length is expressed as the mean of the female group plus
the increment to be added to get the mean of the male group
multiplied by whether the student is in the male group (1) or
not (0).
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The error term (e;) is defined as the residual calculated by
subtracting each individual’s actual score from their predicted
score (in this case as the difference between each individual’s
score and their own group mean). This development contin-
ues to emphasize how each data point can be concretely par-
titioned into two parts that can be added together: MODEL
(e.g., their group mean) and ERROR (their deviation from the
group mean). Similarly, SS Total (based on the sum of the
squared deviations of each data point from the empty model’s
predictions) can be partitioned into SS Model (based on the
deviations of the complex model’s predictions from the empty
model’s predictions) and SS Error (based on the deviations of
the data from the complex model’s predictions). More complex
models reduce the error relative to simpler models, a reduction
we can measure using PRE (Proportional Reduction in Error
= (SS Total - SS Error)/SS Total or SS Model/SS Total). Error
is not just random, however; it also includes variation due to
additional as-yet-unmeasured explanatory variables. The devel-
opment of error (i.e., SS and PRE) is similar to treatments in
other textbooks with a focus on modeling (Judd, McClelland,
and Ryan 2017; Kaplan 2017).

Although we can reduce error by making more complex
models, we also sacrifice degrees of freedom. Degrees of free-
dom is, in a sense, the currency of statistical power. We “earn”
more degrees of freedom by having a larger sample but “spend”
degrees of freedom every time parameters are added to a model.
We introduce the F statistic as a measure of PRE that takes the
number of parameters per degree of freedom into account (see
Judd, McClelland, and Ryan, pp. 52-56). In our simple one-
parameter models, F can be thought of as the ratio of PRE/1 to
(1-PRE)/(n-1). In other words, it is the PRE obtained per model
parameter (1 for our simple models) divided by the average
PRE that could be obtained by adding all possible remaining
parameters (i.e., if there were one parameter added for every
remaining degree of freedom).

Once we have developed a model with a grouping variable as
the explanatory variable, it is straightforward to follow the same
approach in Chapter 8 to building models that have a quanti-
tative (as opposed to categorical) explanatory variable. It is here
that our connections to core concepts and representations begin
to pay off. Whereas in the traditional course students are led to
see ANOVA (including concepts such as F ratio) and regression
as two separate topics, we show them that both types of models
can be represented by the same GLM equation. All that has
changed is the interpretation of the two parameter estimates,
going from the mean of group one (i.e., the prediction when X; is
0) and the increment from group one to two (i.e., the increment
to add when X; increases by 1), to the y-intercept of the best-
fitting line (i.e., the prediction when X; is 0) and the slope that
defines how much is added for each unit increase in X;.

Figure 2 depicts how the same structure built up in the
“exploring variation” phase of the course is reprised once we
have been able to fit models and measure error quantitatively.
We return to the broader goal of attempting to understand the
DGP that gave rise to our empirical sample. This time, instead
of using the shuffle() function and looking at the resulting
visualizations qualitatively, we can also compute, for example,
the best fitting estimates of the mean differences (i.e., b;) in each
of our shuftled distributions. Now we can look at whether our
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Figure 3. Evaluating models. When “evaluating models,” students go beyond the best fitting parameter estimates in their models. They consider how those parameter
estimates could potentially vary depending on different DGPs. Students connect the shuffling (randomization) and resampling (bootstrapping) they have done with
building up sampling distributions of particular parameter estimates such as the b1 values (pictured here), or PRE or F.

sample b; is similar at all to our randomly generated b, values.
We can also reconceptualize the empty model of the DGP as one
where 81 = 0 and thus notice why b; values generated from the
“null” DGP will cluster around 0 (see bottom right of Figure 2).

Evaluating Models

Finally, we move from modeling variation to evaluation and
comparison of statistical models. This part of the book (Chap-
ters 9-11) usually takes more time, about 1 and 2 weeks per
chapter. (Note: There is a Chapter 12 but it is a brief review of all
the concepts of the whole course in a new example context.) By
Chapter 9, students have practiced exploring informal models
of variation, fitting models to data, and evaluating how well
the models fit the data by looking at the proportion of error
reduced by a complex model compared with the empty model
(PRE). But how well do our models fit the DGP? How accurate
are the parameter estimates we compute based on data? And
most important, when we compare two models (such as a group
model versus the empty model), how do we decide which one
better represents the DGP? That is, how do we know whether
the model that uses Sex to predict Thumb length is better than
the one that does not?

Answering questions such as these requires a journey into
the third realm of the distribution triad, sampling distributions.
Clearly, if we had studied a different sample we would have come
up with slightly different parameter estimates (by or b;), and

different measures of fit, such as PRE or F. Figure 3 shows that
the mean difference between male and female thumb lengths in
the sample was 6.56 mm, but a different sample would have a
different best fitting value for b;. Sampling distributions, which
exist in our imagination, are the distributions from which our
parameter estimates are drawn. Just as interpreting a single score
requires us to know about the distribution from which it came,
interpreting a statistic (such as a parameter estimate) requires us
to know something about the distribution from which it comes.

In this section of the course, students learn to explore the
variability among samples. They use techniques such as simula-
tion, bootstrapping, and randomization to generate many ran-
dom samples from a hypothesized DGP, and use these samples
to create sampling distributions of parameter estimates. Figure 3
shows a sampling distribution of 10,000 mean differences gener-
ated by randomization (a combination of the do() and shuftle()
functions, Pruim, Kaplan, and Horton 2017). Students can see
that the empty model of the DGP does not always produce a
sample with a mean difference of 0. The standard deviation
of a sampling distribution (or Standard Error) allows us to
reason about our parameter estimates using logic like this: If
the DGP has the mean, variance, and shape we assumed in our
simulation, then how likely is it that we would get a random
sample with an estimate as extreme (or more extreme) as one
observed in our data? They can also concretely tally up the
number of mean differences in their sampling distribution that
are more extreme than the difference observed in their sample.



We start by thinking about the distribution of a statistic (such
as by or b;) and note that any parameter we estimate based
on a sample can be thought of as coming from a sampling
distribution. We could construct a sampling distribution of PRE
or of the F ratio based on the empty model (null hypothesis) and
then use that sampling distribution to calculate the probability
of getting our data (i.e, p < 0.05) if the empty model is true.
(Even if the empty model were true, simulations reveal that there
would still be variation in Fs such that some samples would have
quite high F ratios just by chance.) We can examine the F ratio
calculated from our data against simulated, bootstrapped, ran-
domized, and mathematically modeled sampling distributions
of E By using PRE and F to compare a complex model with
the empty model, we are preparing students to compare two
complex models that differ from each other when neither is the
empty model.

Evidence of Understanding: A Pilot Study

We are only at the beginning of what we see as a long-
term project. However, given that our goal is for our students
to develop a deep understanding of the domain, how would
we measure such an outcome? In our practicing connections
approach, we are investing a lot of time in developing intercon-
nections among the bits of knowledge that make up the tradi-
tional statistics curriculum. We do this because coherent and
interconnected knowledge structures should be more flexible
and transferable. Do we see any evidence of this?

We conducted a pilot study to examine transfer. There are
many ways to assess transfer; indeed, each time we present
students with a new data set we are asking them to extend what
they have learned in one context to apply in another. Our focus
in this study is on preparation for future learning (Bransford
and Schwartz 1999). If students come to understand statistics
in a deeper way, and are able to connect what they are learning
to core concepts of the domain, then they should be better
positioned to learn new statistical techniques. In fact, this is one
of the goals we have for our course—that students will be better
prepared for more advanced courses.

To assess students’ preparation for future learning, we added
assessment questions on the final exam that asked students
to transfer what they had learned about ANOVA and sim-
ple regression to an example of multiple regression with two
explanatory variables, one quantitative and one categorical.

We added the multiple regression transfer questions to the
final exams of two large introductory statistics classes taught in
the psychology department at UCLA, one in the fall of 2018, the
other in the winter of 2019. The 10-week classes, which met for
four hours each week, were taught by two different instructors
with different instructional styles and classroom pedagogies, but
both using our new online textbook. There were 265 students
that completed the Fall course, and 209 that completed the
Winter course.

UCLA is a fairly diverse, though highly selective university.
Most students in the course were psychology majors. Seventy-
three percent of students identified as female, 26% identified
as male, and 1% identified as non-binary or did not answer.
When asked to choose which races/ethnicities they identify as,
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3% chose African-American, 28% chose White, 39% chose Asian,
20% chose Latinx, and 10% chose Other or did not respond (the
sum is coincidentally 100%, but students were allowed to choose
multiple options). Most students were in their second (53%) or
third (39%) year of college (first year: 5%; fourth or greater year:
3%). Student ages were not collected.

Students were told that they would get extra credit for com-
pleting this section of the exam, but that if they needed the time
to complete the main part of the final exam, they would be given
the extra credit anyway. We explained to students that we were
interested to see if they could figure out what would happen if a
second predictor were added to a model. Of the 474 students
who completed the course, all but 45 completed the transfer
questions (38 in the Fall, 7 in the Winter).

Materials and Procedure

For both classes, students took an in-class comprehensive final
exam on an electronic device (e.g., a phone, tablet, or laptop).
The two exams covered the same content, were based on the
same dataset (which students had not previously encountered),
and included very similar questions. The transfer questions were
identical across the two exams.

Both the exam and the transfer questions used the
candy_rankings dataset, available through the fivethirtyeight
R package (Hickey 2017; Kim, Ismay, and Chunn 2018). The
dataset was based on a survey in which people were shown
different pairs of common Halloween candies and asked to
choose the candy they liked best (the “winner”). Each of the 85
rows in the dataset was a type of candy (e.g., KitKat). Variables
included winpercent (the percentage of matchups in which the
target candy was selected), sugarpercent (the sugar content
of the candy), chocolate (whether or not the candy included
chocolate), and others.

In the preamble to the transfer questions, students were
shown the (now familiar) output of the GLM analyses for
two separate models of winpercent: the chocolate model (i.e.,
winpercent; = by + bjchocolate;) and the sugar model (i.e.,
winpercent; = by + bjsugarpercent;). The outputs, shown in
Figure 4, included both the parameter estimates and ANOVA
tables. The ANOVA tables were created in the style of Judd,
McClelland, and Ryan (2017) using the supernova function
from the supernova R package (Blake, Chrabaszcz, Son, and
Stigler 2019). The tables include a column for proportional
reduction in error (PRE) instead of the more traditional >
or R%.

After being presented with the outputs shown in Figure 4,
students were asked a series of questions. We present these
questions below, along with a summary of students’ responses.

Questions and Results
Question 1T—Inventing GLM notation

Question 1 asked students to consider the possibility of creatin
a single model that included both chocolate and sugarpercent
as predictors, and try to “represent the two-predictor model in
GLM notation” using regular letters (e.g., b1 for by, or Xi for X;).
They typed their responses into a standard HTML input box.
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Call:
Im(formula = winpercent ~ chocolate, data =
Coefficients:
(Intercept) chocolateTRUE
42.1 18.8

candy_rankings)

Chocolate model

Model: winpercent ~ chocolate

Model (error reduced) |
Error (from model)

Total (empty model)

Analysis of Variance Table (Type I SS)

7368.542 1 7368.542 56.532 0.4052 .0000
| 10818.492 83 130.343

| 18187.034 84 216.512

Call:
Im(formula =
Coefficients:
(Intercept) sugarpercent
44,609 0.119

winpercent ~ sugarpercent, data

candy_rankings)

Sugar model

Model (error reduced) |
Error (from model)

Total (empty model)

Analysis of Vvariance Table (Type I SS)
Model: winpercent ~ sugarpercent

955.002 1 955.002 4.600 0.0525 .0349
| 17232.033 83 207.615

| 18187.034 84 216.512

Figure 4. Model fits and ANOVA tables for the chocolate model (top) and the sugar model (bottom) of winpercent.

Fifty-three percent of the students gave completely cor-
rect responses. However, even students who were not com-
pletely correct nevertheless included many correct features (see
Table 1). In Table 1 we show the proportion of students who
included a single outcome variable, a single intercept, two
unique predictor coefficients, two unique predictor variables,
and a single error term. Most of these features were included
by more than 90% of students.

Questions 2-4—Reasoning about PRE, SST, and SSE in the
new model

Students were next asked three multiple-choice questions in
which they made predictions about PRE, SST, and SSE for the

new two-variable model. Questions and a summary of responses
are shown in Table 2.

Students performed very well on these questions, with the
vast majority indicating, correctly, that PRE for the combined
model should be greater than the single-predictor models, the
SSE should be lower, and the SST should not change. See Table 2
for more details. A chi-square test of goodness-of-fit was per-
formed for each question to determine whether the patterns of
responding were different from chance (0.25). Preference for the
options was not equally distributed for PRE [x2 (3, N = 456) =
842,p < 0.001], SSE [x2 (3, N =458) =694, p < 0.001], nor SST
[x2 (3, N =458) =909, p < 0.001].

From these data, it is clear that a majority of students have
at least a broad understanding of how adding predictors to a
model should affect key measures of error. This is a notable
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Table 1. The proportion of students including each feature in their GLM notation response.

Feature Example Proportion
Completely correct yi =b0 + b1*X1i + b2* X2i + ei 0.536
yi =b0 + b1X1i + b2X2i + ei
yi = b0 + b1(X1i) + b2(X2i) + ei
win_i=b0 + b1*chocolate_i + b2* sugar_i + ei
A single outcome variable yi =b0 + b1*X1i + b2* X2i + ei 0.993
Not: b0+ b1*X1i + b2* X2i + ei
Asingle intercept yi =b0 + b1*Xi + b2*Xi + ei 0.995
No intercept yi =b1*X1i + b2*X2i + ei 0.005
Two intercepts yi =b0 + b1*X1i + b2 + b3* X2i + ei 0.072
Two unique predictor coefficients yi =b1*Xi + b2*Xi 0.812
Not:yi =b1*Xi+ b1*Xi
Two unique predictor variables b1*X1i + b1*X2i 0.599
Only used one predictor yi=b0+b1*Xi+b2+e 0.316
Used the same predictor twice yi =b1*Xi + b2*Xi 0.246
Used more than two predictors yi =b0 + b1*X1i + b2*X2i + b3* X3i + ei 0.014
A single error term yi=b0 +ei 0.949
Not:yi = b0

NOTE: Correct features are shaded gray in the feature column.

Table 2. Questions, response options, and proportion of students choosing each option for Questions 2, 3, and 4.

Question Option 1 Option 2 Option 3 Option 4
What do you expect the PRE to Higher than either model Between the models Lower than either model Can't tell
be for the new model? 0.822 0.089 0.039 0.050

What do you expect the SS Higher than either model The same as the chocolate model The same as the sugar model Lower than either model
Error to be for the new model? 0121 0018 0016 0.84

What do you expect the SS Higher than either model The same as both models Lower than either model Can't tell

Total to be for the new model? 0.153 0770 0.059 0018

NOTE: Options are presented left-to-right in this table in the same order that they were shown to students. Correct answers and the proportion of students who answered

correctly are shaded gray.

achievement given that models with more than one explanatory
variable were not covered at all in the course.

Question 5—Why is the SSE for the new model smaller?

After answering the previous questions, students moved on to a
new page on which they were informed that, in fact, the SSE is
lower for the two-predictor model than for either of the single-
predictor models. (They were prevented from navigating back
to modify their answer to the prior question.) Given this new
information, students were asked in an open-response question,
why is the SSE for the two-predictor model smaller than the SSEs
of the other two models?

Although the answers varied in their focus and in their
completeness, the majority of students expressed the main idea
we were going for, relating SST, SSM, and SSE to the core concept
of DATA = MODEL + ERROR. Seventy percent of students
were able to explain that SSE is lower because the complex
model explains more error. This was also the most common idea
included in the responses. Here are two examples:

Because with two explanatory variables that both account for
some of the variation from the empty model the SS model
would be larger than both the sugar percent model and the

chocolate model. With a larger SS model and the same SS
total the SS error is going to be smaller.

The total SS is equal to the Model and Error SS. By adding
more parameters, we can increase the amount of variation
explained, meaning that we can increase the SS Model. Since
SS Total will stay the same, this then means that SS Error must
decrease.

Most incorrect answers were incomplete because they failed
to reference the zero-sum relationship between MODEL and
ERROR. For example, a student wrote, “Because the two-
predictor model explains more error, there is less leftover error
after using the two predictor model” Note that although this
response is largely correct, it is incomplete because it does not
explicitly note that this is true because the SST is the same
for both models. A smaller proportion of incorrect answers
included misconceptions (e.g., “combining both... makes the
sample larger..”). For example, one student wrote, “It should
have a lower SS error as you are combining two explanatory
variables together, the amount of error explained by the SS
model would add up together and increase, thus reducing SS
error” Again, there are some correct ideas in this response but
it implies (incorrectly) that the SS model for the two-predictor
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Call:

Im(formula = winpercent ~ chocolate + sugarpercent, data = candy_rankings)

Coefficients:
(Intercept) chocolateTRUE  sugarpercent
38.2621 18.2733 0.0857

Analysis of Variance Table (Type I SS)

Model: winpercent ~ chocolate + sugarpercent

ss df MS F  PRE p

,,,,,,,,,,,,,,,,,,,,,,,,,,, [ sosamsians mn sasemssn memnss SReEe Sws e

Model (error reduced) | 7856.127 2 3928.064 31.178 ©.4320 .0000

chocolate | 7368.542 1 7368.542 58.487 0.4163 .0000

sugarpercent | 487.585 1 487.585 3.870 0.0451 .8525
Error (from model) | 10330.907 82 125.987

Total (empty model)

| 18187.034 84 216.512

Figure 5. The code, model estimates, and ANOVA table for the linear model that uses chocolate and sugarpercent to predict winpercent.

Table 3. Question prompt, response options, and proportion of students choosing each option for the model prediction question.

Question Option 1 Option 2 Option 3 Option 4
What would you predict the win percent 38.26 + 18.27 38.26 + 18.27 + 0.0857 38.26 + 18.27 + 0.0857*sugarpercent Can'ttell
to be for a candy that has chocolate? 0442 068 0478 0.011

NOTE: Options are presented left-to-right in this table in the same order that they were shown to all students. Option 3 (shaded in gray) was the correct answer.

model is the sum of the SS models for each single predictor
model.

Some students gave more sophisticated answers. For exam-
ple, one student wrote that SSE would be smaller because “it
is measuring the distance from the data to the complex model,

which should get smaller as more complexity is added”

Question 6—Making predictions with the new model

To test their understanding of model predictions, we gave stu-
dents the parameter estimates and corresponding ANOVA table
for the new two-predictor model (see Figure 5) and asked them,
on a multiple-choice question, to predict winpercent for a candy
that contains chocolate.

This was a difficult transfer question for a few reasons. First,
although the model included sugar percentage, the question
does not explicitly mention sugar. Second, in the ANOVA table,
sugar percentage is not statistically discernible! predictor (evi-
denced by the p—value), which may lead students to discount it.
Third, the correct answer was an expression (38.26 + 18.27 +
0.0857 x sugarpercent) rather than a single value. Because the
model includes sugarpercent and students were not given a
specific value for sugar percentage, the correct answer needed
to include sugar percentage as a variable. Students had little
experience with predictions left as algebraic expressions in the
course and were never shown the correct GLM equation for
the best fitting two-predictor model. Students were primarily
working from their own intuition about what that would be.

"We use the phrase “statistically discernible” instead of “statistically signifi-
cant” See Witnmer (2019) for a rationale.

Answer options, and the proportion of students selecting
each, are shown in Table 3. Despite the intentionally difficult fea-
tures of this question, the correct answer was the most popular
answer. Almost equally popular was Option 1, which completely
omitted sugarpercent.

Because we asked this as a multiple-choice question, the
thinking of the students who chose Option 1 is unclear. For
example, some students may have omitted sugarpercent because
it was not a discernible predictor, whereas others may not have
included sugarpercent because it was not explicitly mentioned
in the question. The popularity of Option 1 suggests that stu-
dents did not realize that this option (38.26 + 18.27) predicts
winpercent when sugarpercent is 0 (38.26 + 18.27 + 0). It would
be interesting to probe further about when they would use the
two-predictor model versus the chocolate model alone (from
Figure 4, 42.1 + 18.8) to make predictions.

Question 7—Speculating on why order of entry (chocolate
versus sugarpercent) matters

In Question 7, students were told that we reran the two-
predictor model, but this time reversed the order of the two
predictors, putting sugarpercent in first followed by chocolate.
They were asked to compare the two outputs (Figures 5 and 6)
and to explain why the values in the ANOVA tables might be
different.

This is a challenging question because students would have
to invent the concept of Type I SS having only learned about
SS in situations with a single explanatory variable. Type I SS are
calculated by adding terms into a model sequentially. The first
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Im(formula = winpercent ~ sugarpercent + chocolate, data = candy_rankings)

Coefficients:
(Intercept) sugarpercent chocolateTRUE
38.2621 0.0857 18.2733

Analysis of Variance Table (Type I SS)

Model: winpercent ~ sugarpercent + chocolate

Ss df MS F PRE p

,,,,,,,,,,,,,,,,,,,,,,,,,,, [ sessmsses ou Sesmesmy mEsden SamndE HEsEa

Model (error reduced) | 7856.127 2 3928.064 31.178 ©.4320 .0000

sugarpercent | 955.0802 1 955.002 7.580 0.0846 .0073

chocolate | 6901.126 1 6901.126 54.777 0.4005 .0000
Error (from model) | 10330.907 82 125.987

Total (empty model)

| 18187.034 84 216.512

Figure 6. The code, model estimates, and ANOVA table for the two-predictor model of winpercent in which the order of entry of the two predictors is reversed (with
sugarpercent now entered before chocolate). Note that the table shows Type | sums of squares.

variable will “explain” all the variance that is attributable to it
alone plus the variance that could also be explained by the sec-
ond variable (assuming there is some shared variance between
the two variables). The second variable will only explain the
variance that is attributable to it alone, after subtracting out the
variance explained by the first variable.

In this case, the chocolate and sugar percentage variables are
correlated (r =~0.1) so when chocolate is included in the model
first, the Type I SS for chocolate includes the variation explained
by chocolate uniquely as well as the variation that could also
be explained by sugarpercent. Thus, when chocolate is included
first, the SS for chocolate is greater than when it is included
second.

Some of the students’ explanations were quite impressive. For
example, one student wrote:

Since chocolate and sugarpercent are related (amount of
chocolate predicts some amount of sugarpercent, and vice
versa), the order in which each model is run matters. When
running the chocolate model second, there is less variation
left because of the sugarpercent model, so the chocolate
model explains less variation in this case. Running the choco-
late model first would give it more variation to explain away.

Another wrote:

The variable that goes first explains more variation than
if it were to go second. The logic behind this is that the
second variable attempts to explain the leftover variation
unexplained by the first variable. In other terms, both vari-
ables overlap in their process of explaining variation and
whichever variable goes first will account for explaining the
variation contained in the overlap.

Examination of students’ responses revealed four different ideas
that we judged to be correct. These ideas (along with the pro-
portion of students who mentioned each) were:

o The first variable gets more of the variation (0.308)

o The second variable explains the “left over” variation (0.265)

o The variation that is available to be explained is changing
during the process (0.187)

o The variables overlap in what they can explain (0.097).

Importantly, 40.5% of students mentioned at least one of these
correct ideas—quite impressive given that multiple regression,
not to mention the order of entry of variables into a regression
analysis, was never mentioned in the course.

Nevertheless, this question was challenging, with 53.6% giv-
ing only incorrect answers (e.g., “the difference is due to sam-
pling variation”) or answers deemed irrelevant to the question
being asked (e.g., “one variable is better at explaining”), and 5.9%
either not attempting to answer or giving answers indicating
that they did not understand what the question was asking (e.g.,
“because they are different variables”).

Discussion

In this article, we have set forth the rationale behind our practic-
ing connections approach to teaching introductory statistics, and
we have given the reader a guided tour through our interactive
online textbook, Introduction to Statistics and Data Science: A
Modeling Approach. Our goal throughout is to help students
build a coherent representation of the domain of statistics by
continually making connections between core concepts, repre-
sentations, and situations in the world.

The concepts and representations we chose to emphasize—
the concept of statistical model, notation of the General Linear
Model, and the computational representation of statistical con-
cepts using R—connect the content of our course with current
developments in statistical reasoning. (We are not the first to
attempt this approach; see Kaplan 2017). Although we cover
topics such as null hypothesis testing, we try to put all such
topics into a model comparison context.
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Our pilot data provided encouraging examples of how our
sample of mostly non-STEM students managed to apply simple
ideas of modeling introduced in the class to the task of reasoning
about more complex models that they have not seen before.
Instructors teaching with our book in community colleges and
regional state universities report that at least some students who
had not thought of themselves as being able to learn program-
ming or as being a “math person” engaged successfully with core
concepts of modeling.

Although more rigorous data collection is necessary, our
current speculation is that the novelty of what students are
asked to learn may support the success of a greater variety of
students. Whether students had strong mathematical prepara-
tion or not, virtually none of our students had ever learned R.
Even if some students had taken AP Statistics in high school,
almost none of our students had been exposed to the unifying
concept of statistical model, or to computational techniques
such as simulation, randomization, and bootstrapping. These
factors may put students with diverse backgrounds and levels of
preparation on more of an even footing. One future direction
we are excited to undertake is to more thoroughly assess our
students’ abilities to differentiate and selectively apply some
of the more sophisticated techniques and strategies, such as
simulation, bootstrapping, and randomization, after completing
just the introductory statistics course.

Of course, we are only at the beginning of our project,
and many challenges remain. Although the textbook is freely
available, there is great variety in how individual instructors
in different institutions implement the course. We do not yet
know the best ways to implement the course materials for a large
lecture course or a more intimate course; for a general audience
or amajor specific audience (e.g., statistics taught in economics);
for students at a community college or a highly competitive
institution; for a course taught with face-to-face meetings or
fully online (synchronously or asynchronously). For this reason,
we invite interested readers to join our networked improvement
community working to improve the online textbook and its
implementation (see Stigler et al., in press). Readers can preview
the current version of the book at CourseKata.org. Instructors
can sign up to teach using the online book (available at no

charge), sharing important data back with the core research and
development team. Researchers can join to conduct research
to increase our understanding of the teaching and learning of
statistics while at the same time improving the quality of the
book.

Although we find our transfer results to be encouraging, the
reader may wonder why we haven't compared our students to
a control group receiving more traditional instruction. In fact,
we want to do that. Given how different our course is from
more traditional courses, however, we have struggled to find
the best ways to measure transfer that would be valid for both
conditions. For example, we want our students to cast increas-
ingly complex situations into a model comparison framework,
even though it would be meaningless to test the traditional
student on concepts related to model comparison. Still, we want
to try to develop valid transfer measures in future studies that
can be used across different courses. We also want to examine
how transfer relates to other important measures of learning
such as attitudes and motivation (e.g., Schau et al. 1995) and
well-studied measures of basic statistics knowledge (delMas,
Garfield, Ooms, and Chance 2007; Whitaker, Foti, and Jacobbe
2015).

At the same time, we want to stress the importance of
improvement research as an important approach to education
research and development (c.f., Bryk, Gomez, Grunow, and
LeMahieu 2015.). Too often, innovative programs are compared
to traditional ones prematurely, before the potential of the
innovation can be fully tested. We believe that it is important
to understand variation within our course first before trying
to look for average differences between our course and more
traditional ones.

At this stage in our project, our goal is not to determine
whether or not our approach is effective, but instead what it
would take to make the approach effective for a diversity of
students. This question, which we view as an important stage
in the development of education innovations, is not one we
can answer by ourselves. We will need the collaboration of
instructors, their students, talented curriculum designers and
developers, and other researchers to realize the potential of our
approach.
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Appendix—Transfer Questions

Below is the Im() and supernova() output for two models of winpercent: one using chocolate and the other using sugarpercent as the explanatory
variables.

Im(formula = winpercent ~ chocolate, data = candy_rankings) chocolate
model
Coefficients:
(Intercept) chocolateTRUE
42.14 18.78

Analysis of Variance Table
Outcome variable: winpercent
Model: 1lm(formula = winpercent ~ chocolate, data = candy_rankings)

Model (error reduced) | 7368.5 1 7368.54 56.532 0.4052 .0000
Error (from model) | 10818.5 83 130.34

Total (empty model) | 18187.0 84 216.51

Im(formula = winpercent ~ sugarpercent, data = candy_rankings) sugarpercent
model
Coefficients:
(Intercept) sugarpercent
44,6094 0.1192

Analysis of Variance Table
Outcome variable: winpercent
Model: Im(formula = winpercent ~ sugarpercent, data = candy_rankings)

Model (error reduced) | 955 1 955.00 4.5999 0.0525 .0349
Error (from model) | 17232 83 207.61

Total (empty model) | 18187 84 216.51

As you can see, the chocolate model explains more of the variation in winpercent than does the sugarpercent model.

Question 1

Let’s say we want to create a more complex model (we will call it the two-predictor model) that includes two explanatory variables in a single model:
chocolate and sugarpercent. We could represent this two-predictor model in a word equation like this:

winpercent = chocolate + sugarpercent + other stuff

How do you think you would represent the two-predictor model in GLM notation? (Enter the notation using regular letters, for example, bl for by; or Xi
for X;.)
<TEXT ENTRY BOX HERE>

Question 2
What do you expect the PRE to be for the new model?
« Between the PRE for the chocolate model and that for the sugarpercent model

o Higher than either the chocolate model or the sugarpercent model
o Lower than the PREs for either the chocolate model or the sugarpercent model



16 (&) J.Y.SONETAL.

« Can't tell from the information given

A. Question3

What do you expect the SS Total to be for the new model?

« Lower than that of the chocolate model and the sugarpercent model
« Higher than that of the chocolate model and the sugarpercent model
o The same as both the chocolate model and the sugarpercent model

« Can't tell from the information given

Question 4

What do you expect the SS Error to be for the new model?

o The same as that of the chocolate model

« Higher than that of either the chocolate model or the sugarpercent model
o The same as that of the sugarpercent model

o Lower than that of either the chocolate model or the sugarpercent model

<PAGE BREAK>

Question 5

Here is the answer to the previous question: The two-predictor model should have a lower SS error than either the chocolate model or the sugarpercent
model. Why do you think this is true?
<TEXT ENTRY BOX HERE>

Question 6

We fit the two—predictor model using Im(winpercent ~ chocolate + sugarpercent, data=candy_rankings). The resulting parameter estimates and
anova table are presented below.

winpercent ~ chocolate + sugarpercent

Im(formula = winpercent ~ chocolate + sugarpercent, data =
candy_rankings)

Coefficients:
(Intercept) chocolateTRUE sugarpercent
38.26211 18.27331 0.08567

Analysis of Variance Table

Outcome variable: winpercent

Model: lm(formula = winpercent ~ chocolate + sugarpercent, data =
candy_rankings)

SS df MS F PRE p
Model (error reduced) | 7856.13 2 3928.06 31.1784 0.4320 .0000
chocolate | 7368.54 1 7368.54 58.4867 0.4052 .0000
sugarpercent | 487.59 1 487.59 3.8701 0.0268 .0525

Error (from model) | 10330.91 82 125.99

Total (empty model) | 18187.@3 84 216.51

Based on this output, what would you predict the winpercent to be for a candy that contains chocolate?

o 38.26+18.27

e 38.26+18.27 +8.57

o 38.26 + 18.27 + 8.57*sugarpercent
o Can't tell from the output above
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Question 7

Finally, we ran the two-factor model in two ways (see output below). On the top is the result of running the model with chocolate first, followed by
sugarpercent (just like we did before). On the bottom, we reversed the order, putting sugarpercent first, followed by chocolate.

winpercent ~ chocolate + sugarpercent

Im(formula = winpercent ~ chocolate + sugarpercent, data =
candy_rankings)

Coefficients:
(Intercept) chocolateTRUE sugarpercent
38.26211 18.27331 0.08567

Analysis of Variance Table

Outcome variable: winpercent

Model: lm(formula = winpercent ~ chocolate + sugarpercent, data =
candy_rankings)

SS df MS F  PRE p
Model (error reduced) | 7856.13 2 3928.06 31.1784 0.4320 .0000
chocolate | 7368.54 1 7368.54 58.4867 0.4052 .0000
sugarpercent | 487.59 1 487.59 3.8701 ©0.0268 .0525

Error (from model) | 10330.91 82 125.99

Total (empty model) | 18187.03 84 216.51

winpercent ~ sugarpercent + chocolate

Im(formula = winpercent ~ sugarpercent + chocolate, data =
candy_rankings)

Coefficients:
(Intercept) sugarpercent chocolateTRUE
38.26211 0.08567 18.27331

Analysis of Variance Table

Qutcome variable: winpercent

Model: Im(formula = winpercent ~ sugarpercent + chocolate, data =
candy_rankings)

SS df MS F PRE p
Model (error reduced) | 7856.1 2 3928.06 31.1784 0.4320 .0000
sugarpercent | 955.0 1 955.00 7.5802 0.0525 .0073
chocolate | 6901.1 1 6901.13 54.7766 ©.3795 .0000

Error (from model) | 10330.9 82 125.99

Total (empty model) | 18187.0 84 216.51

As you can see, a lot of things are similar across these two models: SS model, SS error, SS total, and all three of the parameter estimates. On the other
hand, SS for chocolate and for sugarpercent are quite different across these models. Why do you think this might be? What’s happening here?
<TEXT ENTRY BOX HERE>
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