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A B S T R A C T   

Introductory statistics students struggle to understand randomness as a data generating process, 
and especially its application to the practice of data analysis. Although modern computational 
techniques for data analysis such as simulation, randomization, and bootstrapping have the po
tential to make the idea of randomness more concrete, representing such random processes with R 
code is not as easy for students to understand as is something like a coin-flip, which is both 
concrete and embodied. In this study, in the context of multimedia learning, we designed and 
tested the efficacy of an instructional sequence that preceded computational simulations with 
embodied demonstrations. We investigated the role that embodied hands-on movement might 
play in facilitating students’ understanding of the shuffle function in R. Our findings showed that 
students who watched a video of hands shuffling data written on pieces of paper learned more 
from a subsequent live-coding demonstration of randomization using R than did students only 
introduced to the concept using R. Although others have found an advantage of students them
selves engaging in hands-on activities, this study showed that merely watching someone else 
engage can benefit learning. Implications for online and remote instruction are discussed.   

A long-term challenge for statistics educators has been finding effective ways to help students understand randomness as a data 
generating process (Garfield & Ben-Zvi, 2005; Zieffler et al., 2008). Although hands-on activities such as coin flipping and dice rolling 
have long been considered an important part of the statistics educators’ toolbox (Dyck & Gee, 1998; Lunsford et al., 2006), connecting 
such activities to important statistical concepts such as sampling distributions and hypothesis testing has proven difficult in practice 
(Pfaff & Weinberg, 2009). Students find it difficult to make these connections, which requires seeing a distribution of data as just one of 
many possible distributions that could have been produced by a random process. 

Recent developments in the field of statistics and data science, however, provide new opportunities for students to apply concepts 
of randomness to the interpretation of data (Chance & Rossman, 2006). Once almost entirely based on mathematics and mathematical 
models, statistics is increasingly becoming a computational science. Techniques such as simulation, randomization, and bootstrapping 
provide a less algebraic and thus relatively more concrete basis for understanding how simulations of randomness can be applied in the 
practice of data analysis (Pfaff & Weinberg, 2009). Instead of proving what a distribution of a sample statistic would look like under 
certain conditions using calculus, empirically simulating distributions of statistics under certain conditions and directly observing 
what they end up looking like is now possible with computer code. 
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A common but very difficult task in statistics is to imagine a circumstance, such as when two variables have only a random 
relationship, and then predict the resulting probability distributions of possible sample statistics (e.g., the correlation of the two 
variables). Computational techniques such as randomization allow us to program up a simulation where two variables are randomly 
related, generate many samples, calculate the sample statistic of interest, and then examine the result of these simulated statistics. Not 
only do computer-based simulations support new methods of statistical analysis (e.g., randomization or permutation tests), but they 
also provide new ways of teaching students about randomness. 

The shuffle function in R, part of the mosaic package (Pruim et al., 2017), allows students with minimal experience in coding to 
quickly and easily construct a randomized sampling distribution based on many random shuffles of an actual data set. Using the shuffle 
function, students can construct a sampling distribution of the difference between two experimental groups by repeatedly randomizing 
the pairings of grouping and outcome variables in a data set. The resulting sampling distribution of differences would be centered at 0, 
because any relation between group and outcome would be broken by the shuffling. The standard error of the distribution would give 
some indication of how likely various differences would be if the null hypothesis were true. And the sample statistic of interest—the 
observed difference between groups in an actual study—could be interpreted in the light of this sampling distribution. 

A number of investigators have explored the use of such computational simulations to support students’ understanding of statistical 
concepts (Chance & Rossman, 2006; Hodgson & Burke, 2000; Wood, 2005). Compared to traditional in-class simulation activities, such 
as coin-flipping, computer simulation offers several advantages. For example, computer simulations can be repeated very quickly, thus 
enabling students to see the results of many random iterations in a more concrete way than ever before (Hancock & Rummerfield, 
2020). Further, the results of simulations can be instantly represented in multiple modalities, such as tables and graphs, potentially 
resulting in more flexible understanding of complex concepts such as randomness (Ainsworth & VanLabeke, 2004; Chance & Rossman, 
2006; Zhang & Maas, 2019). And because computer simulations require only a computer and relatively little setup, they are more 
feasible to implement in large undergraduate classes than are traditional hands-on experiments, which require rolling pennies or dice 
over many iterations. 

However, despite the potential of computer-based simulation methods, a review of the relevant literature suggests mixed evidence 
overall for the effectiveness of simulation as an instructional tool (Chance et al., 2004; delMas et al., 1999; Lane, 2015). Though some 
studies show the benefits of simulation, others have shown that the use of computer simulations provides only limited benefit to 
students and can, in some cases, impede learning by exacerbating students’ misunderstandings or increasing their level of confusion 
(Watkins et al., 2014). Other researchers have noted that despite statistically significant research findings of the effect of computer 
simulations, the observed increase in students’ understanding was not substantial (e.g., delMas et al., 1999). 

Computer simulations can provide experts with a fast and efficient way to explore various statistical scenarios. However, because 
such simulations are highly complex perceptual objects, they can be confusing for novices who do not know what they are looking at (e. 
g., is this a sample or a sampling distribution?) nor where to look during a dynamic simulation. Thus, simulations may potentially 
overload novices’ working memory (Savinainen et al., 2005). 

Working memory is a short-term system into which information from the environment flows before it is encoded into long-term 
memory (Baddeley, 1992). Because teaching randomness with computer simulations requires keeping track of multiple elements, 
students may have difficulty connecting particular components of a simulation with the new and abstract statistical concepts they are 
intended to learn. As a result, this kind of instructional experience imposes high demand on the learners’ working memory (Sweller, 
2010, 2020; Sweller et al., 2019) and depletes attentional resources (Tarmizi & Sweller, 1988). 

While computer simulations can provide powerful demonstrations of key statistical concepts, students’ attention may need to be 
directed and scaffolded in order for such simulations to be effective. In contrast, embodied and concrete activities, such as coin- 
flipping, are easier to understand and connect to learners’ prior learning, but limited in their potential to quickly show patterns 
that can only be seen over thousands of iterations. An instructional sequence that combines the benefits of a more embodied approach 
with the benefits of computer simulations might help students connect simulations to their prior experience and to important statistical 
concepts. 

The main goal of the work reported here is to design and test an instructional sequence that is solidly grounded in theories and 
findings from cognitive psychology, including work on cognitive load, embodied cognition, and the design of instructional sequences. 
We are especially interested in a body of research and theory known as “concreteness fading” (Fyfe & Nathan, 2019). According to this 
work, an instructional sequence in which concrete representations are introduced before abstract representations may maximize 
learning. This suggests that rather than choose between hands-on demonstrations and more abstract computer simulations, it might be 
best to do both, with the hands-on activity preceding the computer simulation. 

According to the concreteness fading hypothesis, concrete representations more easily connect to prior knowledge, and then 
provide a foundation on which to build new, related abstract representations (Fyfe & Nathan, 2019; Glenberg et al., 2004; Goldstone & 
Son, 2005; Kokkonen & Schalk, 2021). For example, seeing physical pieces of paper being “shuffled” helps connect to students’ prior 
experience of shuffling in the physical world (e.g., with cards), which might subsequently help with their understanding of a 
computational simulation that “shuffles” rows of a data frame. 

By connecting the more abstract computer simulation with their everyday experience of shuffling, students’ attention is con
strained and directed toward the most relevant aspects of the computer simulation. Although some concreteness fading theories have 
proposed three progressive forms (i.e., enactive, iconic, and symbolic; e.g., Fyfe et al., 2014), in the current study, we focus simply on 
preceding a relatively less concrete experience with one that is more concrete. (Other studies of concreteness fading have followed a 
similar approach, e.g., Goldstone & Son, 2005). 

Beyond the instructional sequence suggested by the concreteness fading hypothesis, we also connect our work to the broader 
literature on embodied cognition. This literature has clearly established that bodily movement can lessen cognitive load and support 
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learning (Ballard et al., 1997; Paas & van Merriënboer, 2020; Pouw et al., 2014; Varga & Heck, 2017). For example, research has 
shown that both observing and performing gestures can provide a way to introduce and coordinate multiple pieces of information 
without increasing cognitive load, which in turn can benefit learning (Cook et al., 2013; Goldin-Meadow & Alibali, 2013; Gold
in-Meadow et al., 2001; Rueckert et al., 2017). Gestures are beneficial not only because they temporarily offload information to the 
hands and physical space (Chu et al., 2014) but also because they provide another modality for representing information (Sepp et al., 
2019). The modality effect in cognitive load theory states that simultaneously presenting information in more than one modality, such 
as adding in an embodied modality, increases working memory capacity beyond that available to one modality alone, thus expanding 
the cognitive resources available for learning (Paas & van Merriënboer, 2020). 

Interestingly, the embodied cognition literature suggests that physical movements can shape cognition and learning even when 
students merely observe these movements (Da Rold, 2018; Tran et al., 2017). Neurons with mirroring properties have been shown to be 
activated both when performing and when watching others perform a similar physical action (Fu & Franz, 2014). More importantly, 
this mirroring only occurs when observing embodied human actions, not when observing disembodied ones such as ball movements. 
This suggests that an instructional sequence that leads with a more concrete and embodied experience may not require a physical 
hands-on activity. Benefits may occur from simply watching a hands-on demonstration. 

1. The current study 

The research reported here lies at the intersection of these research literatures: statistics education, cognitive load theory, the 
design of instructional sequences, and embodied cognition. Most relevant to the current study is a recent one by Hancock and 
Rummerfield (2020), in which students engaged in concrete, hands-on activities before engaging in computer-based simulations. The 
authors found a small yet significant effect in which students learned more about the concept of sampling distributions when in
struction with simulation applets was preceded by a hands-on activity. However, in that study, students physically performed the 
hands-on activity themselves. Left unanswered was whether simply observing hands-on activities in a multimedia learning context 
could produce a similar effect. 

In the current study, prompted by the shift to remote instruction during the COVID-19 pandemic, we investigated the same 
instructional sequence as Hancock and Rummerfield (2020), preceding computer simulation with a hands-on activity. But this time, 
instead of having students participate in a hands-on activity, we had them observe someone else engaging in the activity. It is hard 
enough to implement hands-on activities in large classes, but the prospect of doing so online seemed even more daunting. It would be 
of great practical significance if merely watching a video of a hands-on activity could enhance learning. Based on the argument 
postulated by the modality effect and the literature on embodied cognition, watching a hands-on demonstration could show a benefit 
similar to that found by observing gestures. 

In this initial investigation, we randomly assigned participants into one of two groups: a hands-on group and a live-coding group. In 
the live-coding group, students watched a video of R code being typed and run on a screen as a narrator explained the workings of the 
shuffle function in R (Pruim et al., 2017). In the hands-on group, students watched a video with the same narration, but instead of 
watching someone code in R, they watched a pair of hands simulate the shuffle function by cutting and rearranging pieces of paper 
with data written on them. Both groups of students then watched the same live-coding video in which the shuffle function was used to 
create a sampling distribution. The verbal modality and visual modality were employed in both conditions, whereas the embodied 
modality was only present for the first video in the hands-on condition. 

The question of interest to us was whether watching a hands-on simulation of the shuffle function prior to instruction using 
computer simulation would result in a better, more flexible, and more transferable understanding of the shuffle function (e.g., its use 
for creating sampling distributions and the interpretation of the resulting sampling distributions) than would simply watching 
someone explain the function as they entered and ran code in R. We report two studies with college students taking an introductory 
statistics class in a public research institution. The second study is primarily a replication of the first. 

2. Study 1 

2.1. Method 

2.1.1. Participants 
Thirty-three undergraduate students from Uiversity of California, Los Angeles participated in the study. All students had completed 

the same introductory statistics course in the psychology department, taught by two different instructors, during the previous aca
demic quarter. Both instructors used the same online textbook: CourseKata Statistics and Data Science: A Modeling Approach (Son & 
Stigler, 2017-2022). Students from this class were chosen because they had a common set of background experiences relevant to the 
study—All had been taught how to use the shuffle function in R and had used the function to think about whether randomness alone 
could have generated a sample distribution (i.e., without the effect of an independent variable). 

The two statistics instructors from the prior term emailed their former students to invite them to participate in the study. Students 
were told that their participation would help the textbook authors to improve the book for future classmates. Those who chose to 
participate were given a five-dollar gift card after completing the study. The study design, as well as our method for recruiting and 
compensating participants, was reviewed and approved by the university’s institutional review board for the protection of human 
subjects. 
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2.1.2. Design & procedure 
The study was conducted through Qualtrics (https://www.qualtrics.com). On clicking the survey link, students were randomly 

assigned into one of two conditions: hands-on (n = 18) or live-coding (n = 15). Both versions of the survey were structured in the same 
way. Students first rated their attitudes toward programming in R, then answered two free-response questions designed to assess what 
they remembered about the shuffle function in R from their course. Next, they watched a series of two videos about the shuffle function 
and the concept of randomness. 

The first video contained the same instructional content across the two groups, but differed in the mode of presentation depending 
on which group students had been assigned to. The hands-on video showed an instructor’s hands manipulating a dataset on paper, 
cutting and shuffling the pieces of data, much as might occur during an in-class hands-on exercise. The live-coding video showed a 
screen recording of an instructor writing and running R code in an interactive online Jupyter notebook. 

The second video was identical across the two conditions. Students watched an instructor write code in R and think aloud as they 
worked through a series of R commands (similar to the first video in the live-coding condition). After watching each video, participants 
rated how difficult it was to comprehend. At the end of both videos, participants completed a 22-question survey that assessed their 
understanding of the video and its contents and their perceptions of the activity (e.g., how much they liked the videos). 

2.1.3. Materials 
The two videos shown first (one hands-on, the other live-coding) were matched in content. Both videos explained how the shuffle 

function works. In the live-coding condition, participants watched a narrator type and run R code in a Jupyter notebook while 
explaining what they were doing out loud. (Fig. 1). The narrator used the shuffle function to shuffle one variable in a small data set. In 
the hands-on condition, participants watched a person cut a printed data table into pieces and then rearrange those pieces randomly, 
simulating exactly what the shuffle function did in the live-coding video. As they manually shuffled the pieces of data, the narrator 
explained what they were doing, using almost identical language as used in the live-coding video. 

The only difference in narration across the two videos was in the language used to describe shuffling. For example, in the hands-on 
condition, the instructor would shuffle the data by physically moving the pieces of paper and say, “We can see as we shuffle the rows, 
the position of each row changes. For example, Matt started in position 1, but moved to a different position after we shuffled.” In the 
live-coding condition, the instructor would write down the R code, then press run and say, “When we shuffle the rows, R creates a new 
variable called orig. id. This tells us what position each row occupied in our original dataset. For example, Matt has an orig. id of 1. This 
is because Matt was in row 1 of our original dataset.” Then, in both conditions, the instructor would ask rhetorically, “Is that what you 
expected it would do? Why or why not?” 

The hands-on version of the video was recorded by placing a camera so as to look down from above at the hand movements of the 
instructor. The live-coding video was created via a screen recording of the instructor typing and running code in a Jupyter notebook 
(Kluyver et al., 2016). The second live-coding video (common across the two conditions) was similar in format to the first live-coding 
video. 

The second video, identical across conditions, was a live-coding video that involved applying concepts learned in the first video to a 
larger dataset adapted from a real experiment. The dataset (called the laptop dataset) involved one independent variable (whether 
students viewed a laptop screen during class) and two dependent variables (students’ final grades and students’ self-rated level of 
distraction). In the video, the instructor used the shuffle function in R to explore whether there was an effect of condition on these two 
outcome measures. 

Fig. 1. Screen grabs from the hands-on video and the live-coding video.  
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2.1.4. Measures 

2.1.4.1. Pre-survey and pretest. The pre-survey measures asked students how they felt about their R skills, whether they learned shuffle 
in their class and asked them to rate, on a scale of 0–10, how well they understood the shuffle function. The pretest contained two open 
response questions: “In your own words, explain what the shuffle () function does.” and “In your own words, explain when you would 
use the shuffle () function.” The purpose of the pretest was to make sure, given the small sample size, that the two experimental groups 
did not differ in their understanding of the shuffle function prior to watching the videos. 

2.1.4.2. Posttest and post-survey. The posttest contained 22 questions designed to assess students’ understanding of the shuffle 
function and the concept of randomness. It also included transfer questions that asked students to make and interpret statistical in
ferences. For example, in one question, students were shown one shuffled and one non-shuffled faceted histogram and asked to reason 
about whether there could be a difference between the two conditions. It asked again at the end of the test, “What do you think the 
purpose of the shuffle () function is?” and “In your own words, explain when you would use the shuffle () function.” 

Each correct response was awarded a maximum of one point, with possible scores ranging from 0 to 22. A partial credit of 0.5 was 
given to answers that were partially correct but were missing pieces or manifested some minor misunderstandings. The scoring of the 
free-response questions were conducted by two trained research assistants. They coded the questions based on a predetermined rubric, 
blind to condition. For each question, the discrepancy rate between the two research assistants was lower than 10%. Then, the two 
research assistants met to discuss the discrepancies until a consensus was reached. 

In the post-survey, students again were asked to rate, on a scale of 0–10, how well they understood the shuffle function. A change in 
self-rated understanding score was computed by subtracting the pretest rating of understanding from the posttest rating. Students also 
were asked, using a Likert scale (from strongly disagree to strongly agree), how much they agreed with statements expressing that 
“they would like to see more activities like this in their own online textbook,” “they liked this way of learning R,” and “they learned a 
lot from the activity.” 

3. Results 

An analysis of pretest scores found no significant difference across conditions in students’ prior understanding of the shuffle 
function (t (31) = 0.17, η2 = 0.00, 90% CI = [0.00, 0.06], p = .864). 

Fig. 2 shows overall posttest scores by condition. Participants in the hands-on condition performed better on average on the posttest 
than participants in the control condition (t (31) = 2.27, η2 = 0.14, 90% CI = [0.01, 0.34], p = .031). Similar benefits of the hands-on 
group were observed when pretest was included as a covariate in the multiple linear regression model (t (30) = 2.23, η2

p = 0.15, 90% CI 
= [0.01, 0.34], p = .033). When included as a covariate (i.e., controlling for condition), students’ pretest performance did not predict 
posttest scores (t (30) = 0.86, η2

p = 0.02, 90% CI = [0.00, 0.21], p = .396). 
Independent t tests for each question revealed two open response questions on which the hands-on group performed better than the 

control group. These questions asked students to 1) explain what would happen to the number of observations in one condition if the 
condition variable were shuffled (t (31) = 2.35, η2 = 0.15, 90% CI = [0.00, 0.38], p = .025); 2) describe what a specific line of code that 
shuffled the outcome variable in the dataset was doing (t (31) = 2.06, η2 = 0.12, 90% CI = [0.01, 0.35], p = .048). One free response 
question that asked students to imagine and describe how a histogram would be different if one of the variables were shuffled prior to 
running the code yielded some group difference but the difference in this question was not statistically significant (t (31) = 1.96, η2 =

0.11, 90% CI = [0.00, 0.34], p = .059). 

Fig. 2. Violin Plot Showing Posttest Scores by Condition. Note. Dashed lines show the mean of each group. Purple dots show the median. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Next, we examined whether participants’ self-rated understanding of the shuffle function before and after watching the videos 
differed by condition. The difference between conditions was not statistically significant (t (31) = 1.30, η2 = 0.05, 90% CI = [0.00, 
0.23], p = .204). We also examined if participants would like to see more activities like this in their textbook. A linear regression 
showed that the difference between the two conditions was not statistically significant (t (26) = 0.40, η2 = 0.00, 90% CI = [0.00, 0.13], 
p = .691). 

To evaluate the impact of the intervention on students’ metacognition, we explored the relationship between students’ self-rated 
understanding of the shuffle function post intervention and their performance on the posttest. A linear regression showed that stu
dents’ self-rated understanding post intervention was a significant predictor of their posttest performance (t (31) = 2.05, η2 = 0.12, 
90% CI = [0.00, 0.35], p = .049). However, students’ change in self-rated understanding from pre to post intervention did not 
significantly correlate with performance (t (31) = 1.29, η2 = 0.05, 90% CI = [0.00, 0.26], p = .207). 

4. Discussion 

In this study, we found preliminary evidence that preceding a live-coding video with one showing a hands-on simulation of the 
shuffle function can improve students’ understanding of the shuffle function and the concept of randomness. The study is, to our 
knowledge, the first to test experimentally if students benefit from embodied experiential learning in a concrete to abstract instruc
tional sequence when their participation is limited to watching a video of someone else engaging in a hands-on experience. It is 
important to note that students’ participation was completely online in both the hands-on and live-coding conditions; in both groups, 
students’ participation only involved watching instructional videos. 

Because we used a live-coding video as the control, the findings suggest that it is something specific about seeing the hands carry 
out the randomization, not just the “in the moment” nature of the demonstration, that benefits learning. Our result lines up with many 
studies in the gesture literature that have found that learning is enhanced even when learners were merely observers of gestures during 
learning (Cook et al., 2013; Rueckert et al., 2017; Son et al., 2018). For example, Cook et al. (2013) found that observing hand gestures 
during mathematical learning benefited students’ immediate and delayed posttest performance. 

The findings also make sense in relation to the theory of embodied cognition and the modality effect in cognitive load theory. 
Watching a video of hands shuffling pieces of paper offers an additional modality (i.e., the embodied spatial modality) to the 
multimedia learning context in addition to the visual and auditory modalities. This added modality may have activated embodied 
representations of the core ideas that underlie the shuffle function and eased the cognitive load by providing another pathway for 
students to take in and process information in addition to the already active pathway of language processing. 

The efficacy of this instructional sequence with embodied activities and computer simulation casts light on the teaching of statistics 
and computer programming in the digital era. Practically, given the growing interest in using statistical programming languages like R 
as pedagogical tools, the findings of this study provide important and encouraging insights into the use of hands-on demonstrations to 
complement computer simulation in remote teaching. 

This study shows promising evidence that students can benefit from embodied hands-on experiential learning even when they are 
just observers of the activity. Nevertheless, it is important to keep in mind that this study is still exploratory and is limited by its small 
sample size. We set out to replicate the findings from Study 1 with a larger sample of students in Study 2. 

5. Study 2 

5.1. Method 

5.1.1. Participants 
Based on the results of Study 1, we conducted a power analysis to determine the sample size needed for the replication. Given an η2 

effect size of around 0.14, obtaining a power of .7 or 0.8 required a sample size of 20 or 25 participants per group. 
Forty-seven undergraduate students taking introductory psychological statistics during a summer session at the same public 

research institution participated in the study. Participants were between the ages of 18 and 23 (M = 19.89, SD = 1.09) and 53.19% 
identified as Asian, 8.51% Black or African, 25.53% White, 2.13% American Indian or Alaska Native American, and 23.40% other. 
Students were emailed a link to the survey and told they would receive extra credit toward their course grade if they completed the 
survey. Given the sample size, the power of this replication is between 0.7 and 0.8. As before, the study design and procedures were 
approved by the institutional review board for protection of human subjects. 

5.1.2. Design, procedure, and measures 
The design and procedures for Study 2 were identical to those used in Study 1. On clicking the survey link, students were randomly 

assigned into one of the two conditions: hands-on (n = 20) or live-coding (n = 27). Students answered the same pre-survey questions and 
posttest items and watched the same series of videos as in Study 1. 

The posttest included all 22 questions used in Study 1, plus 9 additional open-ended questions designed to probe students’ ex
planations for their multiple choice answers and to assess transfer beyond the content covered in the video. Each question was given a 
maximum of one point, with possible scores ranging from 0 to 31. The post-survey of attitudinal measures was identical to the one used 
for Study 1. 
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6. Results 

We conducted a two-tailed independent t-test to examine if there were any pre-existing differences between the two conditions. The 
two groups did not differ significantly from one another on the pretest (t (45) = − 0.07, η2 = 0.00, 90% CI = [0.00, 0.00], p = .945). 

Fig. 3 shows the distribution of participants’ posttest scores by condition. Replicating the results of Study 1, participants in the 
hands-on group performed better on average than participants in the live-coding group (t (45) = 2.28, η2 = 0.10, 90% CI = [0.01, 
0.26], p = .028). As in Study 1, this difference remained statistically significant when controlling for students’ performance on the two- 
question pretest using a multiple linear regression (t (44) = 2.35, η2

p = 0.11, 90% CI = [0.01, 0.27], p = .023). 
Independent t tests for each question revealed two open response questions and one multiple-choice question, for which the hands- 

on group performed better than the control group. On the multiple-choice question, students were shown R code that shuffled the 
condition variable in a dataset and were asked what effect they thought running the code would have on the value of condition for row 
1 of the data set (t (45) = 3.80, η2 = 0.24, 90% CI = [0.06, 0.44], p < .001). The free-response questions with significant group effects: 
1) showed students the code to create a faceted histogram with an actual dataset and asked them whether the group difference visible 
in the graph could be due to randomness (t (45) = 2.96, η2 = 0.16, 90% CI = [0.02, 0.36], p = .005); 2) showed students the code to 
create a faceted histogram with shuffled data and asked them what might have caused the difference in the means represented in the 
graphs (t (45) = 2.61, η2 = 0.13, 90% CI = [0.01, 0.32], p = .012). 

As in Study 1, participants’ change in self-rated understanding of the shuffle function as a result of watching the videos did not 
differ across conditions (t (31) = 1.39, η2 = 0.04, 90% CI = [0.00, 0.18], p = .173), nor did their ratings of how much they would like to 
see more activities like this in the future (t (40) = 1.26, η2 = 0.04, 90% CI = [0.00, 0.21], p = .216). Also as in Study 1, linear re
gressions showed that students’ post-intervention ratings of understanding significantly predicted performance on the posttest (t (41) 
= 2.54, η2 = 0.14, 90% CI = [0.00, 0.34], p = .015), whereas participants’ change in self-rated understanding from pre to post 
intervention did not significantly predict posttest performance (t (41) = 0.19, η2 = 0.00, 90% CI = [0.00, 0.08], p = .851). 

7. General discussion 

In both Study 1 and Study 2, students who watched a hands-on video before a live-coding video performed better on the posttest 
than students who watched two live-coding videos. Interestingly, despite learning more, students in the experimental group did not 
necessarily believe they learned more or enjoyed the experience more. Notably, the effect did not involve students themselves 
engaging in a hands-on activity, but only watching someone else engage in the activity on an instructional video. Together, these two 
studies demonstrate the efficacy of an instructional sequence in which computer simulation is preceded by embodied movements to 
support learning. 

We think this instructional sequence that precedes computational simulation with hands-on demonstrations is beneficial for two 
reasons. First, it is possible that the hands-on video made the shuffle function and the concept of randomness more concrete. According 
to concreteness fading and cognitive load literature, the embodied representations help offload some cognitive processing to the 
embodied modality and help connect to learners’ experience in the physical world, thus reducing cognitive load and improving 
learning (Weisberg & Newcombe, 2017). Previously occupied cognitive resources are thus freed up to process more information and 
later engage in problem-solving and inferences-making (e.g., Kastens et al., 2008). 

Although the previous literature in embodied cognition has often focused on learners physically performing the actions themselves, 
findings from the gesture literature, especially the idea that merely observing the actions could be beneficial as well, align with the 
results of our studies. For example, research has shown that learners who observed the instructor’s co-speech gestures about math
ematical concepts achieved superior learning outcomes (e.g., extracted more useful information) than learners who did not see those 

Fig. 3. Participants’ Performance on Posttest by Condition. Note. Dashed lines show the mean of each group. Purple dots show the median. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

I.(Y. Zhang et al.                                                                                                                                                                                                       



Computers & Education 186 (2022) 104545

8

gestures (Alibali et al., 1997; Goldin-Meadow et al., 1992). 
In addition, based on the modality effect from cognitive load theory, it is possible that simply having more ways of representing 

information, especially during tasks that already require split attention, increases learning. The multiple representations literature 
would also suggest that having multiple representations (hands-on + live-coding) is better than having one representation (live-coding 
alone). Previous studies have found that being exposed to multiple representations of the same concept benefits students’ learning in 
STEM domains (Acevedo Nistal et al., 2009; Cheng, 1999), because, according to cognitive flexibility theory, having more than one 
representation helps learners achieve a more adaptive and flexible knowledge reconstruction, which is a crucial feature of deep and 
transferable understanding (Spiro, 1988). 

The current studies suggest a closer connection between the cognitive architecture put forward by cognitive load theory, the 
embodied cognition literature, and the instructional sequence literature. Whereas the previous cognitive framework in cognitive load 
theory primarily focuses on gestures, these two studies suggest that the active ingredient that improves learning may not be limited to 
gestures, but also includes arm movement and object manipulation. Although previous interventions in the literature concerning 
bodily movements beyond gestures have produced mixed results or small effect sizes, our studies consistently demonstrated a medium- 
to-large effect size of watching a hands-on demonstration. 

Another interesting point to consider is that, despite the experimental group learning more, students did not differ significantly 
across conditions in how much they liked the intervention and their change of self-rated understanding. This finding makes sense 
considering that students are not known to be good judges of their own learning. Students often make such judgments based on 
heuristics in the study phase (Koriat, 1997), and their judgments are often influenced by processing fluency (Kornell et al., 2011), 
which is their subjective experience of how much effort they expended on processing information during learning (Alter & Oppen
heimer, 2009). It suggests that the benefits of this intervention may not be perceivable to students. 

Given a larger sample size, it would be interesting to know whether students were accurate in their ratings—for example, for 
students who rated their understanding as having decreased from pre-to post-intervention, did they in fact, perform worse on the 
posttest than they did on the pretest, and is that true across conditions? In addition, given that judgments of learning can be affected by 
processing fluency, are there students whose self-rated understanding decreased but whose performance actually improved from pre-to 
post-intervention? 

The study delivers a practical and timely message to teachers as they work to plan their post-COVID-19 instructional activities as 
well as to those seeking to design better instructional videos with better instructional sequences. It validates the importance of giving 
students some hands-on exposure to the simulation processes prior to the computational simulation we want them to understand and 
also makes it clear that at least some of the benefits of embodied activities can be retained even if students are not performing the 
hands-on activities themselves. For instructors who are limited by class sizes, COVID-19 restrictions, or even simply class time, this 
study points to another possibility to utilize hands-on activities in instruction. 

We also want to highlight the significance of the practice of instruction used in the current study, regardless of conditions. 
Traditional approaches in teaching statistics often emphasize computation and procedures while putting less emphasis on the 
importance of statistical thinking (Garfield & Ben-Zvi, 2005). Although a focus on memorizing the procedural steps to perform 
different statistical routines is a common method of teaching statistics, it often does not lead to transferable understanding (Fries et al., 
2021). The instructional videos used in the two studies engaged students with statistical thinking and inferences instead of pieces of 
procedures, which would limit our capacity to foster students’ ability to think and reason flexibly with unfamiliar data in new contexts. 

This study explored a new method for instructors to promote students’ informal statistical inferences. Through a combination of 
hands-on simulation and computer simulation, students were able to better recognize the omnipresence of variability, understand 
randomness and uncertainty, and use statistical methods to model them. This approach makes computer simulation more under
standable for students with lower coding knowledge and fosters one crucial topic in informal statistical reasoning: reasoning with 
uncertainty and randomness. 

Students are known to view statistics as a branch of mathematics and thus expect instruction to focus on numbers, formulas, and 
procedural computations with one unique right answer (Garfield & Ben-Zvi, 2005). However, if students view statistics as a set of 
procedures to achieve the correct answer, they are likely to feel uncomfortable thinking about variation and uncertainty in data. They 
are also less likely to consider randomness as a possible explanation for observed differences or patterns, a key component of statistical 
inference. Giving students exposure to embodied demonstrations prior to computational simulations may help them better appreciate 
uncertainty and randomness by shifting their attention from the output or conclusions of statistical tests to the processes that generate 
the data. 

7.1. Limitations and future directions 

The two studies reported here offer significant practical implications, but also bear some limitations to be addressed by future 
studies. One important next step to further extend our theoretical understanding of the mechanism is to add in a condition with 
students’ own physical manipulation of the objects, and compare it against the current two conditions. It will be informative to know 
whether students’ own physical actions would further benefit their learning above and beyond the benefits of observing the hands-on 
demonstration due to increasing level of embodiment or physically manipulating the objects themselves will actually be too cogni
tively demanding (i.e., adding too much extraneous cognitive load) that their learning would fall behind the group who observed the 
physical manipulation only. 

Another important condition to consider is a condition with the same object manipulation as the hands-on condition but without 
the actual hands. Future studies should examine this condition because that would help distinguish two competing explanations for the 
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observed improvement of understanding in our studies, whether it is through an activation of an embodied pathway or through simply 
the concreteness in the object manipulations. If embodied cognition is truly the explanation, the condition without the actual hands 
would be inferior to the hands-on condition. Moreover, future studies should explore ways to measure students’ level of embodiment 
after the intervention to examine if an elevation of the level of embodiment is truly the mechanism. 

In summary, the two studies reported here leveraged findings from multiple literatures in cognitive psychology to design and test 
the efficacy of an embodied-to-abstract instructional sequence to improve students’ understanding of randomness, their use of R 
functions to simulate randomness, and their subsequent statistical inferences. It bears an important practical message for statistics 
education and also directs future research to promising advances in our theoretical understanding of the field of embodied cognition, 
cognitive load, and instructional sequences. 
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Appendix A 

Pre-Test Attitudinal Measures.  

1. In Psych 100 A, you learned how to do some R programming. How are you feeling about your R skills?  
a. Extremely bad  
b. Neither good nor bad  
c. Somewhat bad  
d. Somewhat good  
e. Extremely good  

2. Did you learn about the shuffle () function in R in your Psych 100 A class?  
a. Yes  
b. No  
c. Not sure/can’t remember  

3. How well do you understand what the shuffle () function does? (from 0 to 10, with 0 being not at all) 

Pre-Test Questions.  

1. In your own words, explain what the shuffle () function does.  
2. In your own words, explain when would you use the shuffle () function. 

Post-Test Questions. 
The laptop_data dataset contains data from an experiment on the effect of laptops on student learning. Undergraduate students 

were randomly assigned to one of two conditions: view or no-view. In the view condition, students attended a 40 min lecture and were 
allowed to keep their laptops open. In the no-view condition, students attended the same lecture, but were asked to keep their laptops 
closed. At the end of the lecture, students took a test on the lecture content and rated how distracted they felt during class. 

There are three variables in this dataset:  

● condition: the condition students were randomly assigned to, either view or no-view  
● total: the percentage of questions students answered correctly on the post-lesson assessment  
● distracted: students’ self-reported rating of how distracted they were in class.  
1. What would you expect to happen to the value of condition for row 1 if we ran the code below? 

laptop_data$condition < - shuffle (laptop_data$condition)  
2. What would you expect to happen to the value of condition for row 1 if we instead ran the code below? 

laptop_data$total < - shuffle (laptop_data$total) 
We ran this code to create a table that shows the number of observations in each condition. 
tally (~condition, data = laptop_data) 
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Now, imagine we run this code: 
laptop_data$condition < - shuffle (laptop_data$condition) 
tally (~condition, data = laptop_data)  

3. What would happen to the number of observations in the view condition?  
a. The number of observations would increase  
b. The number of observations would stay the same  
c. The number of observations would decrease  
d. The number of observations would increase, decrease, or stay the same, but it’s impossible to tell which  

4. Explain your answer to the previous question 

We used the code below to create a faceted histogram showing the distribution of total in each condition. The vertical lines 
represent mean total scores for the two conditions. Again, you can see that the participants in the no-view group scored higher, on 
average, than participants in the view group. 

stats < - favstats (total ~ condition, data = laptop_data) 
gf_dhistogram (~total, data = laptop_data) %>% 
gf_vline (xintercept = ~mean, data = stats, color = “blue”) %>% 
gf_facet_grid (condition ~ .) 

5. Sometimes groups differ just because of randomness. Do you think the group difference in the histogram above could be due to 
randomness?  
a. Yes, it must be due to randomness  
b. No, it cannot be due to randomness  
c. Maybe, need to further investigate  

6. If you wanted to investigate whether this difference could be due to randomness, what would you do? 

Please be as specific as possible in your response. 
Take a look at each line of code below. For each line, explain 1) what the code is doing and 2) why someone would write that 

code. 
laptop_data$condition.shuffle < - shuffle (laptop_data$condition) 
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7. What is this line of code doing?  
8. Why would someone write this line of code? 

laptop_data$total.shuffle < − shuffle (laptop_data$total)  

9. What is this line of code doing?  
10. Why would someone write this line of code?  
11. Look at the two examples of codes below. Example 1 and Example 2 each produces a faceted histogram. In what ways would the 

two faceted histograms be similar? In what ways would the two faceted histograms be different? 
Example 1: 

gf_dhistogram (~ distracted, data = laptop_data) %>% 
gf_facet_grid (shuffle (condition) ~ .) 

Example 2: 

gf_dhistogram (~shuffle (distracted), data = laptop_data) %>% 
gf_facet_grid (shuffle (condition) ~ .) 
We ran this code to create the graph below. We added a line in each condition to represent the mean of distracted of that con

dition. Notice that the average distracted rating in the no-view condition is lower than the average distracted rating in the view 
condition. 

stats < - favstats (distracted ~ condition, data = laptop_data) 
gf_dhistogram (~distracted, data = laptop_data) %>% 
gf_vline (xintercept = ~mean, data = stats, color = “blue”) %>% 
gf_facet_grid (condition ~ .) 

12. Sometimes groups differ just because of randomness. Do you think the group difference in the histogram above could be due to 
randomness?  
a. Yes, it must be due to randomness  
b. No, it cannot be due to randomness  
c. Maybe, we need to further investigate  

13. If you ran the code in the previous question again, do you think it would produce the same output?  
a. Yes  
b. No  
c. It’s possible, but not likely 

I.(Y. Zhang et al.                                                                                                                                                                                                       



Computers & Education 186 (2022) 104545

12

We revised the code from the previous question to create the graph below. We added a line to represent the mean of distracted for 
each condition. Notice that the average distracted rating in the no-view condition is higher than the average distracted rating in the 
view condition.  

14. What caused the difference in the means represented in the graphs below? 

laptop_data$condition.shuffle < - shuffle (laptop_data$condition) 
stats < - favstats (distracted ~ condition. shuffle, data = laptop_data) 
gf_dhistogram (~distracted, data = laptop_data) %>% 
gf_vline (xintercept = ~mean, data = stats, color = “blue”) %>% 
gf_facet_grid (condition.shuffle ~ .) 

15. If you ran the code in the previous question again, do you think it would produce the same output?  
a. Yes  
b. No  
c. It’s possible, but not likely  

16. Explain your answer to the previous question  
17. Sometimes groups differ just because of randomness. Do you think the group difference in the histogram above could be due to 

randomness?  
a. Yes, it must be due to randomness  
b. No, it cannot be due to randomness  
c. Maybe, need to further investigate 

Look at the two faceted histograms below, along with the code that produced each:   
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18. Why do the two faceted histograms look different?  
19. Based on what you’ve learned from these two histograms, do you think being able to view or not view a laptop during class 

(condition) affects students’ self-reported rating of how distracted they were in class (as measured by distracted score on a post- 
lesson assessment)? 

Imagine we run the code below: 
laptop_data$distracted.shuffle < - shuffle (laptop_data$distracted) 
mean (laptop_data$distracted.shuffle) 
mean (laptop_data$distracted)  

20. How would the mean of distracted. shuffle compare to the mean of distracted?  
a. The mean of distracted. shuffle would be larger  
b. The mean of distracted. shuffle would be smaller  
c. The two means would be the same  
d. It’s impossible to tell  

21. What do you think the purpose of the shuffle () function is?  
22. In your own words, explain when would you use the shuffle () function. 

Post-Test Attitudinal Measures.  

1. How well do you understand what the shuffle () function does? (from 0 to 10, with 0 being not at all) 

Please rate your level of agreement with each of the following statements:  

2. I learned a lot from this activity  
a. Strongly agree  
b. Agree  
c. Somewhat agree  
d. Neither agree nor disagree  
e. Somewhat disagree  
f. Disagree  
g. Strongly disagree  

3. I like this way of learning R functions  
a. Strongly agree  
b. Agree  
c. Somewhat agree  
d. Neither agree nor disagree  
e. Somewhat disagree  
f. Disagree 
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g. Strongly disagree 

Appendix B 

Pre-Test Attitudinal Measures.  

1. On a scale of 1–10, how math anxious are you?  
2. In Psych 100 A, you learned how to do some R programming. On a scale of 1–6 (with 1 being not at all confident and 6 being 

extremely confident), how confident do you feel in your R skills?  
3. Did you learn about the shuffle () function in R in your Psych 100 A class?  

a. Yes  
b. No  
c. Not sure/can’t remember  

4. On a scale of 1–10, how well do you understand what the shuffle () function does? 

Pre-Test Questions.  

1. What do you think the purpose of the shuffle () function is?  
2. In your own words, explain when would you use the shuffle () function. 

Post-Test Questions. 
The laptop_data dataset contains data from an experiment on the effect of laptops on student learning. Undergraduate students 

were randomly assigned to one of two conditions: view or no-view. In the view condition, students attended a 40 min lecture and were 
allowed to keep their laptops open. In the no-view condition, students attended the same lecture, but were asked to keep their laptops 
closed. At the end of the lecture, students took a test on the lecture content and rated how distracted they felt during class. 

There are three variables in this dataset:  

● condition: the condition students were randomly assigned to, either view or no-view  
● total: the percentage of questions students answered correctly on the post-lesson assessment  
● distracted: students’ self-reported rating of how distracted they were in class.  
1. What would you expect to happen to the value of condition for row 1 if we ran the code below? 

laptop_data$condition < - shuffle (laptop_data$condition)  

2. What would you expect to happen to the value of condition for row 1 if we instead ran the code below? 

laptop_data$total < - shuffle (laptop_data$total) 
We ran this code to create a table that shows the number of observations in each condition. 
tally (~condition, data = laptop_data) 

Now, imagine we run this code: 
laptop_data$condition < - shuffle (laptop_data$condition) 
tally (~condition, data = laptop_data)  

3. What would happen to the number of observations in the view condition?  
a. The number of observations would increase  
b. The number of observations would stay the same  
c. The number of observations would decrease  
d. The number of observations would increase, decrease, or stay the same, but it’s impossible to tell which  

4. Explain your answer to the previous question 

We used the code below to create a faceted histogram showing the distribution of total in each condition. The vertical lines 
represent mean total scores for the two conditions. Again, you can see that the participants in the no-view group scored higher, on 
average, than participants in the view group. 

stats < - favstats (total ~ condition, data = laptop_data) 
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gf_dhistogram (~total, data = laptop_data) %>% 
gf_vline (xintercept = ~mean, data = stats, color = “blue”) %>% 
gf_facet_grid (condition ~ .) 

5. Sometimes groups differ just because of randomness. Do you think the group difference in the histogram above could be due to 
randomness?  
a. Yes, it must be due to randomness  
b. No, it cannot be due to randomness  
c. Maybe, need to further investigate  

6. Explain your answer to the previous question:  
7. If you wanted to investigate whether this difference could be due to randomness using the shuffle () function, what would you do? 

Please be as specific as possible in your response.  

8. Alex thinks she only needs to shuffle once to see if the difference between conditions on total could be due to randomness by 
comparing the shuffled result with the original data. Mary thinks she needs to shuffle more than once to be able to see if the 
difference could be due to randomness. Do you agree with Alex or Mary? Explain your answer. 

Take a look at each line of code below. For each line, explain 1) what the code is doing and 2) why someone would write that code. 
laptop_data$condition.shuffle < - shuffle (laptop_data$condition)  

9. What is this line of code doing?  
10. Why would someone write this line of code? 

laptop_data$total.shuffle < − shuffle (laptop_data$total)  

11. What is this line of code doing?  
12. Why would someone write this line of code? 

A Look at the two examples of codes below. Example 1 and Example 2 each produces a faceted histogram. 

Example 1: 

gf_dhistogram (~ distracted, data = laptop_data) %>% 
gf_facet_grid (shuffle (condition) ~ .) 
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Example 2: 

gf_dhistogram (~shuffle (distracted), data = laptop_data) %>% 
gf_facet_grid (shuffle (condition) ~ .)  

13. In what ways would the two faceted histograms be similar?  
14. In what ways would the two faceted histograms be different? 

We ran this code to create the graph below. We added a line in each condition to represent the mean of distracted of that con
dition. Notice that the average distracted rating in the no-view condition is lower than the average distracted rating in the view 
condition. 

stats < - favstats (distracted ~ condition, data = laptop_data) 
gf_dhistogram (~distracted, data = laptop_data) %>% 
gf_vline (xintercept = ~mean, data = stats, color = “blue”) %>% 
gf_facet_grid (condition ~ .) 

15. Sometimes groups differ just because of randomness. Do you think the group difference in the histogram above could be due to 
randomness?  
a. Yes, it must be due to randomness  
b. No, it cannot be due to randomness  
c. Maybe, we need to further investigate  

16. Explain your answer to the previous question:  
17. If you ran the code in the previous question again, do you think it would produce the same output?  

a. Yes  
b. No  
c. It’s possible, but not likely  

18. Explain your answer to the previous question: 

We revised the code from the previous question to create the graph below. We added a line to represent the mean of distracted for 
each condition. Notice that the average distracted rating in the no-view condition is higher than the average distracted rating in the 
view condition. 

laptop_data$condition.shuffle < - shuffle (laptop_data$condition) 
stats < - favstats (distracted ~ condition. shuffle, data = laptop_data) 
gf_dhistogram (~distracted, data = laptop_data) %>% 
gf_vline (xintercept = ~mean, data = stats, color = “blue”) %>% 
gf_facet_grid (condition.shuffle ~ .) 
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19. What caused the difference in the means represented in the graphs below?  
20. Sometimes groups differ just because of randomness. Do you think the group difference in the histogram above could be due to 

randomness?  
a. Yes, it must be due to randomness  
b. No, it cannot be due to randomness  
c. Maybe, need to further investigate  

21. Explain your answer to the previous question:  
22. If you ran the code in the previous question again, do you think it would produce the same output?  

a. Yes  
b. No  
c. It’s possible, but not likely  

23. Explain your answer to the previous question 

Look at the two faceted histograms below, along with the code that produced each (the code might be a bit hard to read, feel free to 
zoom in to get a better read): 
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24. Why do the two faceted histograms look different?  
25. Based on what you’ve learned from these two histograms, do you think being able to view or not view a laptop during class 

(condition) affects students’ self-reported rating of how distracted they were in class (as measured by distracted score on a post- 
lesson assessment)? Why or why not? 

Imagine we run the code below: 
laptop_data$distracted.shuffle < - shuffle (laptop_data$distracted) 
mean (laptop_data$distracted.shuffle) 
mean (laptop_data$distracted)  

26. How would the mean of distracted. shuffle compare to the mean of distracted?  
a. The mean of distracted. shuffle would be larger  
b. The mean of distracted. shuffle would be smaller  
c. The two means would be the same  
d. It’s impossible to tell  

27. Explain your answer to the previous question:  
28. What will the distribution of distracted. shuffle look like compared to the distribution of distracted?  

a. Wider  
b. Narrower  
c. The same  
d. Not sure. It will vary randomly.  

29. Explain your answer to the previous question: 

Post-Test Attitudinal Measures.  

1. How well do you understand what the shuffle () function does? (with 0 being not at all) 

Please rate your level of agreement with each of the following statements:  

2. I learned a lot from this activity  
a. Strongly agree  
b. Agree  
c. Somewhat agree  
d. Neither agree nor disagree  
e. Somewhat disagree  
f. Disagree  
g. Strongly disagree  

3. I like this way of learning R functions  
a. Strongly agree  
b. Agree  
c. Somewhat agree  
d. Neither agree nor disagree  
e. Somewhat disagree  
f. Disagree  
g. Strongly disagree  

4. On a scale of 1–6 (with 1 being not at all confident and 6 being extremely confident), how confident do you feel in your R skills? 
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Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., 

Willing, C., & Jupyter Development Team. (2016). Jupyter Notebooks-a publishing format for reproducible computational workflows (Vol. 2016, pp. 87–90). https:// 
doi.org/10.3233/978-1-61499-649-1-87 

Kokkonen, T., & Schalk, L. (2021). One instructional sequence fits all? A conceptual analysis of the applicability of concreteness fading in mathematics, physics, 
chemistry, and biology education. Educational Psychology Review, 33(3), 797–821. 

Koriat, A. (1997). Monitoring one’s own knowledge during study: A cue-utilization approach to judgments of learning. Journal of Experimental Psychology: General, 126 
(4), 349. https://doi.org/10.1037/0096-3445.126.4.349 

Kornell, N., Rhodes, M. G., Castel, A. D., & Tauber, S. K. (2011). The ease-of-processing heuristic and the stability bias: Dissociating memory, memory beliefs, and 
memory judgments. Psychological Science, 22(6), 787–794. https://doi.org/10.1177/0956797611407929 

Lane, D. M. (2015). Simulations of the sampling distribution of the mean do not necessarily mislead and can facilitate learning. Journal of Statistics Education, 23. 
https://doi.org/10.1080/10691898.2015.11889738 

Lunsford, M. L., Rowell, G. H., & Goodson-Espy, T. (2006). Classroom research: Assessment of student understanding of sampling distributions of means and the 
central limit theorem in post-calculus probability and statistics classes. Journal of Statistics Education, 14(3). https://doi.org/10.1080/10691898.2006.11910587 
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Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292. 

https://doi.org/10.1007/s10648-019-09465-5 

I.(Y. Zhang et al.                                                                                                                                                                                                       

https://doi.org/10.1177/1088868309341564
https://doi.org/10.1126/science.1736359
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref7
https://link.springer.com/book/10.1007/1-4020-2278-6#toc
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref9
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref9
https://doi.org/10.1016/S0360-1315(99)00028-7
https://doi.org/10.1037/a0033861
https://doi.org/10.1111/cdev.12097
https://doi.org/10.1111/cdev.12097
https://doi.org/10.1016/j.newideapsych.2018.04.001
https://doi.org/10.1016/j.newideapsych.2018.04.001
https://doi.org/10.1207/s15328023top2503_6
https://doi.org/10.1207/s15328023top2503_6
https://doi.org/10.1007/s10648-020-09561-x
https://doi.org/10.1007/s00221-014-4042-6
https://doi.org/10.1007/s00221-014-4042-6
https://doi.org/10.1007/s10648-014-9249-3
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref18
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref19
https://doi.org/10.1037/0022-0663.96.3.424
https://doi.org/10.1146/annurev-psych-113011-143802
https://doi.org/10.1146/annurev-psych-113011-143802
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref22
https://doi.org/10.1207/s1532690xci0903_2
https://doi.org/10.1207/s15327809jls1401_4
https://doi.org/10.1080/10691898.2020.1720551
https://doi.org/10.1111/1467-9639.00033
https://doi.org/10.1111/1467-9639.00033
https://doi.org/10.1111/1467-9639.00033
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref29
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref29
https://doi.org/10.1037/0096-3445.126.4.349
https://doi.org/10.1177/0956797611407929
https://doi.org/10.1080/10691898.2015.11889738
https://doi.org/10.1080/10691898.2006.11910587
https://doi.org/10.1177/0963721420922183
https://doi.org/10.1080/10691898.2009.11889536
https://doi.org/10.1080/10691898.2009.11889536
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref36
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref36
https://doi.org/10.32614/RJ-2017-024
https://doi.org/10.32614/RJ-2017-024
https://doi.org/10.1186/s41235-016- 0036-1
https://doi.org/10.1002/sce.20037
https://doi.org/10.1007/s10648-019-09461-9
https://coursekata.org/
https://doi.org/10.1186/s41235-017-0085-0
https://doi.org/10.1598/0710.22
https://doi.org/10.1598/0710.22
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1007/s11423-019-09701-3
https://doi.org/10.1007/s11423-019-09701-3
https://doi.org/10.1007/s10648-019-09465-5


Computers & Education 186 (2022) 104545

20

Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of Educational Psychology, 80(4), 424. https://doi.org/10.1037/0022- 
0663.80.4.424 

Tran, C., Smith, B., & Buschkuehl, M. (2017). Support of mathematical thinking through embodied cognition: Nondigital and digital approaches. Cognitive Research: 
Principles and Implications, 2(1), 1–18. https://doi.org/10.1186/s41235-017-0053-8 

Varga, S., & Heck, D. H. (2017). Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and embodied cognition. Consciousness and Cognition, 56, 
77–90. 

Watkins, A. E., Bargagliotti, A., & Franklin, C. (2014). Simulation of the sampling distribution of the mean can mislead. Journal of Statistics Education, 22. https://doi. 
org/10.1080/10691898.2014.11889716 

Weisberg, S. M., & Newcombe, N. S. (2017). Embodied cognition and STEM learning: Overview of a topical collection in CR: PI. Cognitive Research: Principles and 
Implications, 2(1), 1–6. https://doi.org/10.1186/s41235-017-0071-6 

Wood, M. (2005). The role of simulation approaches in statistics. Journal of Statistics Education, 13(3). https://doi.org/10.1080/10691898.2005.11910562 [Online]. 
Zhang, X., & Maas, Z. (2019). Using R as a simulation tool in teaching introductory statistics. International Electronic Journal of Mathematics Education, 14(3), 599–610. 

https://doi.org/10.29333/iejme/5773 
Zieffler, A., Garfield, J., Delmas, R., & Reading, C. (2008). A framework to support research on informal inferential reasoning. Statistics Education Research Journal, 7 

(2). https://iase-web.org/documents/SERJ/SERJ7(2)_Zieffler.pdf?1402525008. 

I.(Y. Zhang et al.                                                                                                                                                                                                       

https://doi.org/10.1037/0022-0663.80.4.424
https://doi.org/10.1037/0022-0663.80.4.424
https://doi.org/10.1186/s41235-017-0053-8
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref48
http://refhub.elsevier.com/S0360-1315(22)00116-6/sref48
https://doi.org/10.1080/10691898.2014.11889716
https://doi.org/10.1080/10691898.2014.11889716
https://doi.org/10.1186/s41235-017-0071-6
https://doi.org/10.1080/10691898.2005.11910562
https://doi.org/10.29333/iejme/5773
https://iase-web.org/documents/SERJ/SERJ7(2)_Zieffler.pdf?1402525008

	Watching a hands-on activity improves students’ understanding of randomness
	1 The current study
	2 Study 1
	2.1 Method
	2.1.1 Participants
	2.1.2 Design & procedure
	2.1.3 Materials
	2.1.4 Measures
	2.1.4.1 Pre-survey and pretest
	2.1.4.2 Posttest and post-survey



	3 Results
	4 Discussion
	5 Study 2
	5.1 Method
	5.1.1 Participants
	5.1.2 Design, procedure, and measures


	6 Results
	7 General discussion
	7.1 Limitations and future directions

	Credit author statement
	Declaration of competing interest
	Appendix A Declaration of competing interest
	Appendix B Declaration of competing interest
	References


