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In a prior issue of MathAMATYC Educator, we 
reported on our efforts to find out what community 
college developmental mathematics students understand 
about mathematics (Stigler, Givvin, & Thompson, 2010). 
Our work painted a distressing picture of students’ 
mathematical knowledge. No matter what kind of 
mathematical question we asked, students tended to 
respond with computational procedures, which they often 
applied inappropriately and incorrectly. Their knowledge 
of mathematical concepts appeared to be fragile and 
weakly connected to their knowledge of procedures. But 
we also found some reason for hope. First, we found 
that when students were able to provide conceptual 
explanations for procedures, they often produced correct 
answers. Second, though students rarely used reasoning 
on their own to solve problems, they could reason under 
the right conditions. 

To follow up on our previous article, we conducted 
one-on-one interviews with a sample of community 
college developmental math students. These interviews 
were designed to further probe students’ mathematical 
thinking, both correct and incorrect. The interviews not 
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only corroborate our earlier findings, but also enable 
us to piece together a richer picture of these students, 
mathematically speaking. Before we describe the 
methods and findings of the interviews, we will present 
a summary of the picture we are developing. We will 
also speculate on how these students came to approach 
math in the way they do. Though the latter was not the 
direct object of our study, we find such speculation 
helpful for understanding how these students think about 
mathematics, and what might be done to improve their 
future prospects for mathematical proficiency. We rely 
on other research to inform this hypothetical account of 
how students got where they are. After we present our 
hypothetical account, we will present evidence from the 
interviews to support it.

The Making of a Developmental Mathematics 
Student: A Hypothetical Account

Once upon a time, the developmental mathematics 
students of today were young children. Like all young 
children, they had, no doubt, developed some measure 
of mathematical competence and intuition before they 
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entered school. Research tells us that virtually all children 
learn to count, develop basic concepts of quantity, and 
develop understandings of basic mathematical operations 
such as addition and division or sharing (Ginsburg, 1989; 
NRC, 2001). Their concepts and procedures developed in 
tandem. For example, they naturally learned to connect 
rote counting procedures to concepts such as one-to-one 
correspondence and cardinality (Gelman & Gallistel, 
1978). Procedures such as counting were constrained by 
concepts, and so made sense.

All this started 
to change once our 
students entered school. 
There, few links were 
constructed between the 
understandings they had 
and the symbols and 
rules they were taught 
(Hiebert, 1984). They 
may have encountered 
teachers with narrow views of what it means to 
know and do mathematics. These teachers viewed 
mathematics as primarily about computation 
and applying rules (Battista, 1994), or otherwise 
knew that mathematics should make sense but felt 
that notion was implicit in the procedures they 
presented, and therefore never made the underlying 
concepts explicit. In their teaching, they emphasized 
procedures and paid relatively little attention to 
conceptual connections (Schoenfeld, 1988; Hiebert 
et al., 2003). In the process, our students were 
socialized to view mathematics as a bunch of rules, 
procedures, and notations, all of which needed to be 
remembered (Schoenfeld, 1989). At the same time, 
they most likely gave up on the idea that mathematics 
was supposed to make sense, learning that to do 
mathematics well simply required following the steps 
outlined by the teacher. 

Students who were curious, or who tried to 
understand why algorithms worked, were often 
discouraged by the teacher either overtly or 
inadvertently. Understanding procedures takes 
time, and teachers have to “cover” the curriculum. 
Many of these students slowly changed their view 
of mathematics and came to view it as mainly just 
steps to be remembered. Once this view started to 
set in, and was reinforced by rewards such as high 
quiz and test grades, if a teacher tried to get them to 
slow down and understand how an algorithm worked, 
the students would push back, usually by ignoring 
the teachers’ explanations. Conceptual explanations, 

these students felt, were just wasting their time, 
time they needed for practicing and memorizing the 
growing number of procedures for which they were 
responsible and rewarded. The intuitive concepts that 
supported their thinking and reasoning when they 
were younger began to atrophy, serving no purpose in 
the world of school mathematics.

Although most students in U.S. schools shared 
these experiences, most did not end up needing to take 
developmental mathematics courses in community 

college. Some students 
learned on their own, 
or through exceptional 
instruction, the value 
of connecting rules and 
procedures to concepts. 
They discovered 
that things that make 
sense are more easily 
remembered, and they 

sought out sense-making strategies on their own. These 
students went on to excel in mathematics. Still others, 
though they experienced the conceptual atrophy we’ve 
described, were able to rely on a strong memory. On 
their college placement test they remembered what 
to do without necessarily knowing why they were 
doing it, and they managed to land themselves into a 
transfer-level math course.

The community college students that are the 
focus of our attention fall into neither group. 
Without conceptual supports and without a strong 
rote memory, the rules, procedures, and notations 
they had been taught started to degrade and get 
buggy over time. The process was exacerbated by 
an ever-increasing collection of disconnected facts 
to remember. With time, those facts became less 
accurately applied and even more disconnected from 
the problem solving situations in which they might 
have been used.

The product of this series of events is a group of 
students whose concepts have atrophied and whose 
knowledge of rules and procedures has degraded. 
These students lack an understanding of how 
important (and seemingly obvious) concepts relate 

(e.g., that 
1
3

 is the same as 1 divided by 3). They 

also show a troubling lack of the disposition to figure 
things out, and very poor skills for doing so when 
they try. This leads them to call haphazardly upon 
procedures (or parts of procedures) and leaves them 
unbothered by inconsistencies in their solutions. 

If an effective approach 
to applying procedures is 
“ready, aim, fire,” then it’s as 
if those students fail to take 
aim. 
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Our story is summarized in Figure 1.
In the sections that follow, we describe the 

interviews we conducted. As we will show, these 
interviews are consistent with the story we have created, 
further enriching our view of what community college 
developmental mathematics students understand 
about mathematics. We conclude by laying out some 
hypotheses for how we might get community college 
developmental mathematics students to become 
successful mathematics learners, which is what we argue 
many have been capable of being all along.

The Interview and the Interviewees
We interviewed thirty students (15 female, 15 male) 

enrolled in developmental mathematics courses at a 
community college in the greater Los Angeles area. 
Students were drawn equally from Arithmetic, Pre-
Algebra, and Elementary Algebra sections. (The only 
developmental mathematics course not included in the 
interviews was Intermediate Algebra.) Students ranged 
in age from 17 to 51 (M = 21.6, SD = 6.5). Eleven were 
Hispanic, nine were white, four were African-American, 
and six were of mixed ethnicity. For ten students, English 
was not the primary language spoken at home. Interviews 
ranged in length from 54 to 128 minutes (M = 75.6, 
SD = 14.2). Each student received $50 for participating.

The one-on-one interviews took place on the campus 
at which students were enrolled and were scheduled at 

students’ convenience, outside class time. Guided by a 
protocol that was refined through extensive pilot testing 
(see Appendix for questions relevant to this paper), the 
interview set out to assess students’ understanding of 
some key math concepts, from arithmetic through pre-
algebra. We opened each interview by asking students 
to think about what it takes to be good at mathematics. 
That was followed by several mathematics problems 
(e.g., comparisons of and operations with decimals, 
comparisons of fractions and placement on a number line, 
solving equations with one variable, and equivalence). 
For each line of questioning, we anticipated possible 
responses and created structured follow-ups. The general 
pattern was to begin each line of questioning at the 
most abstract level and to become progressively more 
concrete, especially when students struggled. Each of 
the mathematical questions concluded with prompts 
that pressed for reasoning. The interviewer told students 
that she was more interested in their thinking about 
mathematical problems than she was in their answers and 
students were encouraged to talk through their thinking 
aloud as they worked. The interviewer avoided pointing 
out when students made mistakes, often refusing to 
confirm an answer as correct or incorrect when a student 
asked. The closing of the interview included a question 
about advice students would give to their teachers 
about how to teach math so that students would better 
understand it. A Livescribe Pulse pen was used to record 

Figure 1.  The making of a community college developmental math student: A hypothetical account.
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dialog and to capture written work.
Each interview question was coded by two (or 

more) coders. If their coding was initially discrepant, the 
relevant portion of the interview was reexamined and 
discussed until consensus was reached.

Students’ Approach to Problems: Math as a 
Collection of Procedures to Be Applied

When we asked what it means to be good at 
mathematics, 77% of students spoke to the perceived 
procedural nature of the subject. (Only 13% spoke of 
being good at math at understanding concepts.) As 
one prealgebra student put it, “Math is just all these 
steps.” Other students responded in a way that not only 
supported the role of rules and procedures, but also 
discounted the role of conceptual understanding. For 
instance, one Elementary Algebra student stated that, “In 
math, sometimes you have to just accept that that’s the 
way it is and there’s no reason behind it,” and another 
Elementary Algebra student responded that, “I don't think 
[being good at math] has anything to do with reasoning. 
It's all memorization.” When we asked students to give 
advice to a math teacher with respect to what might be 
done to better promote learning, the dominant themes 
were about presenting material more slowly and with 
more repetition, and breaking down procedures into 
smaller steps, all of which reflect an acceptance that math 
is about procedures.

Consistent with those beliefs, when our interview 
questions asked students to solve problems, students 
would quickly choose a procedure they remembered 
from school, and then set about applying it to the 
situation. (This was the case even when we deliberately 
asked questions for which executing a procedure was 
not necessary.) By itself, that approach might not have 
been problematic. The problem lies in the fact that the 
procedures called upon were often either inappropriate 
for the situation or were executed with critical errors—
errors that would surely have been caught had students 
understood the concept underlying the procedure or 
noticed that the magnitude of the answer was not 
reasonable. Without a conceptual understanding of the 
procedures in their toolbox, students were left to rely 
solely on a memory of which to use and how to use it. 
It appeared that over the years and with an increasing 
collection of procedures from which to draw, that 
memory had eroded.

This behavior of drawing on a collection of 
procedures is evident in students’ responses to an 
interview item that asked them to place multiple fractions 

(i.e., 
4
5

, 
5
8

, −
3
4

, 
5
4

) on a number line. Thirty percent of 

students set about dividing, having some recollection that 
it might help them with the task at hand. Although it is 
true that one reasonable approach to this task would be to 
divide numerators by denominators, convert to decimals, 
and use decimals to place each fraction on a number line, 
this is not what was done by students who chose to use 
division. All of the students who used division did so to 
create a new fraction. (The advantage of doing so was 
unclear; if they could place the new fraction, then why 
not the original?) More alarmingly, two-thirds of those 
who used division created a new fraction that wasn’t 
equivalent to the original. Specifically, those students 
divided the denominator of a fraction by the numerator. 
As an illustration, Student #17 (enrolled in Prealgebra) 

converted 
4
5

 to 1
1
4

, which he then converted to 
5
4

 

without noticing (or without being bothered) that 
5
4

 was 

different from the 
4
5

 with which he started. He did the 

same in converting 
5
8

 to 1
3
5

 and then to 
8
5

. It appeared 

that students’ primary goal was not to write a fraction in 
an equivalent form, but rather to perform an operation. 
With the procedure complete, they accepted the resulting 
value as correct, with no apparent regard for whether it 
made any sense. 

One way to interpret why students divided the 
denominator by the numerator is that they “forgot” the 
order. That hypothesis would suggest that instructors 
should “remind” students. Another interpretation, one 
that is based on a more conceptual view of mathematics, 
is that students aren’t appropriately connecting fractions 

and division. If students thought about 
1
3

 as one whole 

that has been divided into three parts, then how could 
they “forget” what to divide by what? The other concept 
that demands attention is that of equivalence. For a 
student to be able to assess whether a result in this case 
is correct, s/he must understand that using division to 
rewrite a fraction as a decimal preserves the value of 

the number. Perhaps Student #17 knows that 
5
4

 isn’t 

equivalent to 
4
5

 but doesn’t know that an appropriate 

result has to be equivalent.
Another problem provides further evidence of 

students’ reliance on procedures. Students were asked 

to select the larger value, given 
a

5
 and 

a

8
. With a basic 
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understanding of fractions (or of division), a student 
could answer this question with no procedure at all, yet 
most students chose to apply one. When the problem 
was posed to Student #24 (enrolled in Arithmetic), she 

selected 
a

8
 as the larger of the two fractions, explaining 

that 8 is larger than 5. When prompted to substitute a 
value for a as a way to help her make a comparison, she 
substituted a 1 in place of each a, and then multiplied 

the resulting two fractions, obtaining 
1
40

. When the 

interviewer asked if that process helped her to compare 
the two fractions, she responded, “In a way.” It seemed 
almost as if she multiplied the two fractions because 
she knew how to, regardless of whether it could help her 
answer the question she had been asked. 

If an effective approach to applying procedures 
is “ready, aim, fire,” then it’s as if those students fail 
to take aim. Students’ tendency to apply procedures 
without thinking of the concepts that underlie them 
was by no means limited to fractions. A question on 
decimal subtraction revealed the same inclination. 
Students were given the problem 0.572 – 0.86, written 
horizontally. One student (enrolled in Elementary 
Algebra) wrote the problem vertically and then 
simply treated each column as a separate problem, 
subtracting the smaller value from the larger no matter 
its placement. For her, the procedure of subtracting 
smaller values from larger values applied to individual 
digits rather than to each value as a whole. Another 
student wrote the problem vertically with 0.572 above 
0.86 (an approach we saw from 80% of students), and 
when calculating, added “1” to 0.572 so that there 
would be a value from which to borrow. He appeared 
untroubled by the change. When their problem set-
up didn’t initially “work,” those students might have 
taken it as sign to reconsider the set-up itself. Had 
they stepped back and thought about the underlying 
concepts, they might have selected an appropriate 
procedure. Instead, students clung to a desire to 
make their chosen procedures work, even when the 
adjustments they made were not mathematically valid. 

Students’ approach to the subtraction problems 
appeared to be very mechanical. We might assume 
that had they been given the problem 5 – 8, at least 
some would have correctly responded –3, or at least 
recognized that something about the order of the 
numbers must be addressed. However, students failed 
to connect the problem they had been asked to set up 
to simpler problems (such as 5 – 8) that might have 
helped them decide on a sensible course of action. 

This might be because they don’t have the habit 
of investigating possible procedures using simpler 
problems, or maybe they don’t think the rules for 
operating with integers will necessarily apply when 
operating with decimals.

To further investigate the degree to which students 
clung to familiar procedures (even when they were the 
most cumbersome option) we presented students with a 
series of multiplication problems and asked that they do 
the calculations mentally. They were as follows:

10 × 3 =

10 × 13 =

20 × 13 =

30 × 13 =

31 × 13 =

29 × 13 =

22 × 13 =

The series was designed to see if students would make 
use of decomposition and the distributive property, 
or perhaps rely on answers to earlier problems 
in the series to help them solve later ones. Either 
method would have made it easier to perform the 
calculation mentally by reducing the load on working 
memory. Seventy-three percent of students never 
used decomposition and the distributive property; 
77% never relied on answers to earlier problems in 
the series. (Sixty-three percent never used either of 
the two approaches.) The standard algorithm was the 
most frequent approach chosen, with 80% of students 
using it at least once and 20% of students beginning 
to use it as early as 10 × 3. Some students enacted the 
algorithm with fingers in the air (or on the desk) and a 
few even “erased” when necessary, thus demonstrating 
their reliance not only on the algorithm itself but also 
on the method of carrying it out.

In many cases, answers to adjacent mental 
multiplication problems could have prompted students 
to question their work, but it very often did not. Of the 
23 students who made at least one error in the series 
of questions, 74% made an error that was sufficiently 
inconsistent with their other answers that had they 
compared their solutions, the mistake should have 
been caught. Students #5 and #10 (both enrolled in 
Elementary Algebra) are examples. The fact that even 
the most egregiously incorrect answers did not alarm 
students reinforces for us the commitment of students 
to procedures they have been taught, even if the results 
make no sense. 
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Student #5
 10 × 3 = 30
 10 × 13 = 113  130
 20 × 13 = 86
 30 × 13 = 120
 31 × 13 = 123
 29 × 13 = 116
 22 × 13 = 92

Student #10
 10 × 3 = 30
 10 × 13 = 130
 20 × 13 = 260
 22 × 13 = 52
 30 × 13 = 120
 31 × 13 = 124

 29 × 13 = 126
It’s unclear whether students considered that there 

might be an easier way to solve the series of mental 
multiplication problems. But it appeared as if students 
relied not just on procedures, but on a single, familiar 
procedure. Perhaps they thought that if some people find 
such problems easy or can calculate them quickly, it’s 
because they can simply keep track of partial products 
better, and not that they use a more efficient strategy. We 
would argue that if instruction includes an exploration of 
multiple solution methods and analysis of how they’re 
related, students might come to think of procedures more 
flexibly. (In a later section we’ll include an example of 
what can happen when this is done.)  

It appeared in the interviews that procedures were 
sometimes memorized without any meaning at all, 
making it difficult for students to know when to use 
them across situations. We asked two direct questions of 
students aimed at assessing whether they knew why they 
were doing what they were doing. The first concerned the 
standard algorithm for multiplication and why we put a 
“0” (or a “*” or a blank) in the rightmost position of the 
second partial product, as illustrated in figure 2. 

   22
× 13
   66
 220
 286

Figure 2. Example of the standard algorithm for multiplication, 
with a zero in the rightmost position in the second partial 
product

Following are examples of student responses:
I guess I’m just used to it. My teacher always says to 

write a zero….You know, I don’t really know the answer 
to why we can’t, but I’m already programmed to do it 
like that, so. I wish I knew. I know there’s a proper term 
for it, but I don’t really know the term. But you can’t 
[right align it]. Because you just get a different answer... 
You get the wrong answer. (Student #4, enrolled in 
Prealgebra)

It’s just being taught, you know? Each time you go 
down for the next number you put a zero. So if there’s 
a third number, I’d put two zeros and you keep going… 
[If you don’t put the 0] you get the wrong answer. But I 
don’t know why. It’s just something from, you know, I 
guess from 4th grade. They just teach you and go with it. 
(Student #8, enrolled in Elementary Algebra)

Um, it might be correct, it might not. To me it’s 
correct because that’s how I, you know, that’s how I got 
used to it. So, I don’t know how other people might view 
it. (Student #24, enrolled in Arithmetic)

I really don’t know. I don’t know why it’s done like 
that but that’s the way I was taught to do it and I always 
just did it like that. I don’t know the answer to that, 
though. (Student #27, enrolled in Elementary Algebra)

The second direct question we asked was about why 
we align the decimal points when we find the difference 
between two values. The following are example 
responses:

I don’t know. You kinda just learn to do it with the 
decimals. I guess you’re just programmed when you 
learn something. I mean, I don’t really fully remember 
decimals. But I know you have to know the decimals, 
unless it’s multiplication or something. But I don’t 
remember. But I guess you’re just programmed. (Student 
#4, enrolled in Prealgebra)

I guess it just looks more organized and it looks 
easier to approach and I think I somewhere along the line 
I think I was just instructed to keep the decimals lined up. 
I don’t remember where I heard that but I just, my logic 
just says keep them lined up to each other. (Student #11, 
enrolled in Elementary Algebra)

I think there is a reason for it, but I just can’t recall 
right now. But I think I was supposed to line up the 
decimals. I mean, but then again, I got 2 [different] 
answers, so I don’t know. I’m not sure. [Experimenter: So 
maybe you don’t line up the decimals?] Maybe I don’t. 
(Student #17, enrolled in Prealgebra)

To the first question, fewer than half of students 
referred to place value in their response and to the second 
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question only a third did. We might have hoped that a 
student would respond that when we multiply 22 × 13, 
a 0 is inserted in the second partial product because that 
product represents the multiplication of 22 by 10, and not 
22 by 1. At best, students stated the term “place value” or 
“placeholder” without being able to explain its relevance 
to the question. Just because students can recite the 
place value names does not mean they attach a “powers 
of ten” meaning to the places. The persistent neglect of 
magnitude of numbers leads us to conclude that students 
either do not understand the magnitude of numbers or 
that they do not use this knowledge to reason about 
values when they’re unsure of how to proceed.

The collection of student errors we’ve described does 
more than illustrate the confused algorithmic thinking 
in which many students engage. It demonstrates the 
role that procedures play in the minds of students when 
they are presented math problems to solve. Given a 
problem, students think of a memorized procedure that 
might be applied to it. They don’t think through the 
appropriateness of the procedure to the situation but 
proceed with a mechanical application of it. When they 
arrive at an answer, they’re done. They don’t evaluate 
the result’s appropriateness, nor do they find reason 
to reconsider the procedure they chose. A desire to 
reconsider might have been fruitless anyway. Their lack 
of understanding of the meaning underlying procedures 
would leave them little clue as to what might be an fitting 
alternative.

Conceptual Atrophy and the Failure to Reason
“Conceptual atrophy” is a phrase we coined in 

our prior article (Stigler et al., 2010) and we use it to 
refer to what happens to developmental mathematics 
students as a result of their many years’ experience of 
school mathematics. When students enter school, they 
bring with them intuitive ideas about quantity. Those 
intuitive ideas are often incorporated into mathematics 
lessons in lower elementary grades, and in later grades 
they frequently find their way into the introduction to 
a new topic. However, when it comes time to become 
proficient at a procedure, that conceptual basis falls 
away. The math instruction students then encounter 
frequently fails to capitalize upon students’ intuitive 
ideas and instead emphasizes steps disconnected from 
meaning. Even efforts to capitalize on students’ intuitions 
(as with estimating) often quickly turn to rules and 
procedures (as in “rounding to the nearest”). The result 
is that the potential for students to develop a stronger, 
more powerful conceptual grasp—a strong muscle, if 
you will—goes unrealized. Whatever sense of number 
and willingness to reason that students once had withers, 

and the conceptual basis that would keep procedures 
under control goes undeveloped. In the section above 
we provided examples of developmental math students’ 
heavy reliance on procedures. Now we ask the question, 
do any of students’ intuitive ideas about quantity remain 
and, if so, what are their limits?

Not surprisingly, we saw a continuum in students’ 
sense of number and ability to reason. For some students, 
basic concepts of number appeared lost. One would 
expect, for instance, that an upper-elementary student 

would be able to state that a proper fraction—say 
1
2

 or 
1
3

—is greater than 0, but less than one. Those young 

students could likely draw a number line containing 0 
and 1, and then partition that interval into the appropriate 
number of segments of equal length based on the 
denominator. We found students, though, who struggled 
to place common fractions correctly on a number line. 
Student #21 (enrolled in Arithmetic) produced the 

following diagram when asked to place the numbers −
3
4

 

and 
5
4

 on the number line. 

Student #21

Student #10 (enrolled in Elementary Algebra) started 
her drawing like this, and then the following discussion 
ensued.

Student #10

Interviewer: Can you put 
4
5

5
8

and  on a number line?

Student: Maybe. Oh my goodness! I don’t know if this 
is right. The number line is not my friend. Oh my 
goodness! I don’t think this is right. Gosh! They’ve 
shown this a million times but it never processes.

I: Well, tell me what you’re thinking about.
S: I don’t know. I’m thinking of going to 4 but then it’s 

just like, then between 5 but I don’t know if that’s 
right. I was thinking it was just here but I feel like 

that’s 4
1
2

 and not 
4
5

. But I don’t know. That’s the 

only way that makes sense to me.
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“SORRY, THAT’S NOT CORRECT.” “THAT’S CORRECT.”

TWO ONLINE HOMEWORK  
SYSTEMS WENT HEAD TO HEAD.  
ONLY ONE MADE THE GRADE.
What good is an online homework system if it can’t recognize right from 
wrong? Our sentiments exactly. Which is why we decided to compare 
WebAssign with the other leading homework system for math. The 
results were surprising. The other system failed to recognize correct 
answers to free response questions time and time again. That means 
students who were actually answering correctly were receiving failing 
grades. WebAssign, on the other hand, was designed to recognize and 
accept more iterations of a correct answer. In other words, WebAssign 
grades a lot more like a living, breathing professor and a lot less like, 
well, that other system. 
 So, for those of you who thought that other system was the right 
answer for math, we respectfully say, “Sorry, that’s not correct.”

800.955.8275     webassign.net/math

WA ad MathAMATYC Educator.indd   1 12/14/10   11:58:09 AM



12 MathAMATYC Educator ~ Vol. 2, No. 3 ~ May 2011

I: Okay.
S: I don’t see how you can go to 4 and then somehow 

go to 5. Do you know what I’m saying? And then 
like back-tracking there to 5.

I: Okay.
S: I just don’t see the connection.
I: Okay.
S: It’s one of those things that I just don’t understand. 

My teacher would show me on the board and I still 
won’t get it.

I: The number line?
S: Just like yeah how you can– Well just the fraction 

or the number line. To me it’s like you either go to 4 
or you either go to 5, you know? You don’t go [to 5] 
and then like you back-track [to 4], like you know? 
Like they should each be– like you graph 4 then you 
graph 5. Not you go to 4 and you go over this much. 
It just doesn’t process to me.

I: Okay. 

S: And then do you want me to 
5
8

?

I: Where would you think that might go?

S: Honestly, I don’t know. 
5
8

. I was thinking of putting 

it at– I don’t know why, just like putting it between 
at like 6 or 7, only because it’s between 5 and 8.

When Student #16 (enrolled in Arithmetic) was asked 

to compare 
4
5

 and 
5
8

, he converted them to 
32
40

 and 
25
40

, 

respectively. When then asked to place the four original 

fractions (i.e., 
4
5

, 
5
8

, −
3
4

, and 
5
4

) on a number line, he 

placed only the numerators (see the following diagram). 
He did not seem concerned by how the conversion 
affected the values he placed or by the fact that he 
converted only two of the four values. More importantly, 
his understanding of fractions (like that of Students #21 
and #10, above) didn’t take into account the relationship 
between the numerator and denominator. 

Student #16

Just as basic concepts of number appeared to have 
atrophied, so too did understandings of basic operations. 
It would be reasonable to expect that any young student 
would be able to say that if you add two numbers to get 
a third, subtracting either of the initial two from the sum 

from would leave the other. This is often shown in the 
“fact families” that students study in early elementary 
grades. This understanding is important to establishing 
the uniqueness of the sum of two numbers and the 
inverse relationship of addition and subtraction. To assess 
whether that understanding had withstood their years of 
experience in math classes, interviewees were asked to 
check 462 + 253 = 715 using subtraction. They nearly 
always subtracted the second addend from the sum (i.e., 
715 – 253 = 462). However, when asked if they could 
have subtracted the other addend instead, some didn’t 
know, others were skeptical, and a few claimed it would 
be incorrect to do so.

Student #26 (enrolled in Prealgebra) was among 
those who believed it is possible to subtract only one of 
the two addends to check the addition. The following 
conversation ensued after she subtracted 462 from 715.

I: How do you know to subtract the 462?
S: [LONG PAUSE] I have no idea. [LAUGHS] 

Because it’s the biggest number? 
I: Okay. Could you have subtracted the 253, or can you 

not do that because it’s smaller?
S: You could but [LONG PAUSE] I don’t think you 

can. I think you have to subtract the top number.
I: Okay. Why is that, that you have to subtract the top 

number?
S: [PAUSE] I have no idea.

Student #22 (enrolled in Arithmetic) was a skeptic. 
She subtracted 253 from 715. The conversation after that 
point was as follows:

I: How did you know to subtract 253?
S: Because it’s the smaller number. Well, I don’t know. 

My teachers said to always subtract the bottom 
number.

I: Okay. Could you have subtracted the top number 
from 715?

S: No. Well, I mean I guess you can. I don’t think so, 
though. I don’t know. ‘Cus all my teachers taught me 
that way, so I don’t think so.

I: Okay. What if you try it and see what happens?
S: So 715 – 462 = 253. [STUDENT WORKS 

PROBLEM ON PAPER] Oh, you can.
I: So what did you notice?
S: You could subtract any one and you’ll still get either 

one as the answer.

Student #9 (enrolled in Elementary Algebra) had an 
epiphany during the interview. In the following excerpt 
he shares his excitement at discovering that either addend 
can be subtracted from the sum to obtain the other 
addend. It’s worth noting that it took little prompting to 
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set the student on the course of this discovery.
I: How did you know to choose 253 to subtract from 

715?
S: I had a feeling you were going to ask me that right 

when I pulled that in for some odd reason, and I 
know I’m not going to give you an answer why. I 
don’t remember why, but I just know that with some 
odd reason when checking– I don’t know if it’s 
always true that you pick the bottom one, ‘cus I was 
thinking like why did I pick the bottom? How come 
I didn’t pick the top one? I mean, what happens if 
you pick the top one?

I: Well, you’re welcome to see, if you want.
S: Let me see that. Hold on. I never thought this until 

now. Wow, this is very interesting. I never thought 
about that. Let me see. So you’re going to get 3 
that becomes a 6 and 6 or 5 will get you 11 32. Oh 
wow, so it doesn’t even matter. Is that true? Does it 
even matter which one you pick? ‘Cus 253 is in the 
original equation so I guess you’re right. I guess it 
doesn’t matter which one you pick. I don’t remember 
that. I just always remember that picking the last one 
for some odd reason, which is really interesting now 
that I learned this right now. I guess all you have to 
do is get your solution and then subtract it from any 
of these numbers. Well, I don’t want to say “any” 
because you could be left with a negative. I want to 
say you could, but I’m not too sure. But I feel that 
I’m safe going by the answer subtracted from the 
bottom number and your answer should match that 
one to make sure that it’s correct.

I: Okay.
S: So yeah.
I: Great. 
S: I’m going to ask my math teacher today. It’s 

interesting I just learned that.

We might speculate that Student #9, and others like 
him, were encouraged by their K–12 teachers to check 
their work by using inverse operations, and later in 
algebra class students utilized inverse relationships to 
solve equations. In both cases, addition and subtraction 
are inextricably related. However, somewhere along 
the line, the act became just one more procedure 
disconnected from its meaning. The concept students 
likely understood at one time had deteriorated, and was 
never connected to new topics.

Interestingly, we did find some instances in which 
students could rely on their intuitive ideas about quantity. 
However, when the same concepts were transferred 
into mathematical notation—when the math looked 
more like a math class—students set their conceptual 

understandings aside. For example, when we asked 
students, “What would happen if you had a number and 

added 
1
3

 to it? Would it be more than what you started 

with, less than what you started with, the same as what 
you started with, or can you not tell?” Eighty-seven 
percent of students answered correctly that the resulting 
number would be larger than the original. We followed up 

immediately with the question, “If a x+ =
1
3

, is x more 

than a, less than a, the same as a, or can you not tell?” 
Now students weren’t so sure. Thirty percent thought the 
second question was unanswerable unless a and/or x was 
provided, in spite of the fact that 78% of those students 
had just correctly answered the same question, albeit 
without mathematical notation. 

We then repeated the same two questions, but 
replaced addition with multiplication. That is, “What 
would happen if you had a number and multiplied it by 
1
3

?” and, “If a x× =
1
3

, is x more than a, less than a, the 

same as a, or can you not tell?” A student (enrolled in 

Arithmetic) who was able to agree that 
1
3

 times a number 

would result in a number less than the original number 
used the idea of dividing by 3, a rare occurrence in this 
sample. However, he took a very different approach when 

asked the same question using the equation a x× =
1
3

. He proceeded to choose a number for a, and then to 

multiply the number by 1 and by 3 to find x. If a = 2, for 

example, then 2 × 1 = 2, and 2 × 3 = 6. So, you end up 

with x =
2
6

 , which can be simplified to 
1
3

. He went on 

to show that this method works for every number, always 

resulting in 
1
3

. Whatever a is, x will always be equal to 
1
3

! This particular student commented that he has been 

“taught by like seven million teachers how to do this.” 

While it is true that the student incorrectly used 
2

2
 

(rather than 
2
1

) as an equivalent form of 2, we would not 

say that this was his most shocking error. It seems more 
important to note that he failed to notice that multiplying 
1
3

by a number other than one could not possibly result 

in 
1
3

. We would avoid saying “if he had used the correct 
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representation of 2, he would have been able to state 
that the result is larger.” Rather, we would argue that 
more importantly, accepting his products shows that he 
believes in his procedure, and so it is not necessary to 
verify that his answer makes sense. It is interesting to 

note that when multiplying, this student used 
2

2
 as an 

equivalent form of 2, and when adding used 
2
0

. As was 

the case for other students, equivalence had been reduced 
to a set of rules for writing equivalent values that came 
to be far removed from the concept of equivalence. 
“Equivalence” appeared to be thought of as something 
you do or make, not as something you maintain.

When concepts atrophy, students are left with no 
foundation upon which to reason. There were points 
throughout the interviews where we saw students miss 
opportunities to reason. One such place was when we 

asked students to identify the larger of 
a

5
 and 

a

8
. An 

answer that involves reasoning might include that some 
number of fifths is larger than the same number of 

eighths, if 
a

5  and 
a

8
 are based on the same whole. Only 

two interviewees reasoned in that way. Most students 
relied on the application of an oft-practiced procedure of 

creating common denominators, usually 
8
40
a

 
and 

5
40
a

. 

Though not incorrect, it is evidence that students apply 
known procedures rather than using reasoning, even 
when reasoning is more efficient. (In our previous article 
we showed that when students used only reasoning about 
dividing a whole into pieces, the value they identified as 

larger was always 
a

5
.)

In the prior section, we concluded that students 
rotely apply procedures. The failure we see among 
them to draw on concepts is the other side of the 
same coin. For some students we interviewed, basic 
concepts of number and numeric operations were 
severely lacking. Whether the concepts were once 
there and atrophied, or whether never sufficiently 
developed in the first place, we cannot be certain. 
What we do know is that these students’ lack of 
conceptual understanding has, by the time they entered 
developmental math classes, significantly impeded the 
effectiveness of their application of procedures. And 
application of procedures is, without concepts and a 
disposition to reason with them, all that students have 
left to go on.

What Might We Do to Remedy the Problem?
The goal of much of developmental math education 

appears to be to get students to try harder to remember 
the rules, procedures, and notations they’ve repeatedly 
been taught. We are thinking about a different solution, 
one motivated by the picture we’ve painted of 
developmental math students. We propose a solution 
with three elements, each of which is necessary for 
success. Though in this paper we don’t take on the fine 
details of how to successfully implement the elements in 
developmental classrooms, we believe that figuring out 
how to do so might lead to dramatic improvements in 
student outcomes.

Element One: We must find a way to reawaken 
students’ natural disposition to figure things out and re-
socialize them to believe that this is a critical element 
of what it means to do mathematics. What might such 
a class look like? Tasks presented to students would be 
crafted to reveal intuitive understandings of quantity and 
operations and build number sense, and teachers would 
create conversations with students to elicit and enhance 
these understandings. Students’ work would highlight 
the value of mathematical reasoning. They would be 
pressed to generalize and to consider the limits of their 
generalizations, sometimes solving problems wholly 
without the use of procedures. In fact, it would probably 
be best to pose problems that cannot be answered by 
applying standard procedures, in effect forcing students 
to think to find a solution. If we want students to 
strengthen their ability to reason productively, we must 
convince them that such an approach to mathematics can 
yield them the answers they seek. 

Element Two: Necessary to convincing students to 
think is providing them with productive things to think 
about. Specifically, rather than asking students to call 
to memory what they’ve learned about procedures, ask 
them to consider the implications of concepts that seem 
obvious and make those concepts explicit. A teacher 
might, for instance, connect fractions and division, 
discussing that a fraction is a division in which you 
divide a unit into n number of pieces of equal size. 
Alternatively, the teacher might initiate a discussion of 
the equal sign, pointing out that it means “is the same as” 
and not “here comes the answer.” Teachers may think that 
it’s implicit in math that concepts, objects, and notation 
are connected and to point out the obvious would be 
superfluous, or even demeaning. We argue instead that 
making big, obvious concepts and connections explicit 
helps students to organize the domain. The real challenge 
here, and a place in which further investigation is needed, 
is to figure out which are the most powerful concepts for 
students to work with. Which will help connect together 
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the largest portion of the domain?
Element Three: Finally, once students begin to 

appreciate the value of figuring things out and have 
begun to lay the foundation of powerful concepts, we 
can reintroduce procedures into the curriculum. In 
many cases, standard algorithms map directly onto how 
students solve problems without them. When this is the 
case, it should be pointed out. The result will be that 
procedures are no longer seen as arbitrary, sometimes 
magical, series of steps, but rather as logical ways 
to organize effort, connected to core concepts that 
organize the mathematical landscape. We thus advocate 
for teachers developing procedures while consistently 
maintaining connections to the concepts that underlie 
them. Procedures should be seen by students not as the 
primary resource available for problem solving, nor as 
a replacement for thinking. Instead, procedures should 
be seen as efficient mechanisms for solving problems, 
supporting and being supported by sense-making.

That we advocate for reasoning and building 
knowledge of concepts shouldn’t be taken to imply that 
we oppose practice (more commonly associated with 
learning procedures). Mathematical thinking is a skill 
and, as such, requires deliberate practice. We suggest that 
teachers give students repeated opportunities to think 
and reason, linking core concepts to rules, procedures, 
and notations. The practice we envision is not one of 
large numbers of problems similar to each other and 
to the problem demonstrated by the teacher, but rather 
small numbers of rich problems carefully selected to 
highlight and develop concepts and build students’ skills 
in applying them.

Glimmers of Hope
In spite of some of the distressing findings we 

reported on here and in our prior article, we also see in 
the interviews some glimmers of hope that the remedies 
we’ve suggested may prove effective. It’s a nontrivial 
finding that students were eager to share with us their 
mathematical thinking and that they required little 
prompting to do so. Though students are rarely asked 
to think aloud as they solve problems and to share the 
rationale for their actions, they quickly fell into that 
routine. When given an opportunity and limited guidance, 
(often only the prompt “Why did you do that?”) they 
were able to reason. It took little for us to set those 
moments in motion: a few, well-crafted prompts, a 
focus on understanding “why,” and a lot of listening 
to students’ thinking. Students also reported having 
learned from the interview experience (though that 
wasn’t necessarily our intent!). They made connections 
and saw value in them. Importantly, those experiences 

of discovering connections were perceived positively—
indeed, sometimes joyfully—by students. The key 
seemed to be to give tasks that presented opportunities 
to reason and to press students to reason when the 
opportunity was present.

Student #28 (enrolled in Prealgebra) provides an 
example of how students sometimes came to reason 
when encouraged to do so. This conversation shows not 
only the student’s adeptness with procedures, but also 
willingness to reason directly once he had exhausted the 
two procedures he knew: 

I: If I have these two numbers—I have 
a

5
 and 

a

8
 —

which one of those two is larger?

S: Let’s see, 
a

5
.

I: Why do you say that?
S: I’m just guessing here, but I got the, I think it’s 

called, the greatest common factor or something, a 5 
and 8. So what I just did was I turned the 5 and the 8 
into 40, both of them, and I multiplied 5 × 8, so it’d 
be 8 over 40… 8a over 40, and this one would be 5a 
over 40. So I figured that 8 a’s is greater than 5 a’s.

I: So what you did is you got common denominators, 
and then you compared the numerators.

S: Yes.
I: Is there a way that you can think about this problem 

simply by comparing the common numerators as 
they are?

S: As they are? I guess I could’ve done 
1
5

  and 
1
8

. So  
1
8

would be– we could just probably turn them into 

decimals. So like 5 divided into .10. No. It’ll be .2, 
I guess. And then we turn this one into a decimal, 
and, well, I think 2, 6, .125 if we turn this one into a 
decimal.

I: Okay. Do you mind if I write down what you did?
S: Yeah.

I: You turned that 
1
5  into this [.2], and you turned 1

8
 

[into .125]. 
S: Yeah, I guess you can do that. I’m not sure. But it 

would seem like .2 would still be greater.
I: Yeah. So you’ve, so far, found two ways to compare 

them. So you got common denominators and 
compared the numerators, and then you substituted 
for a and turned it into a decimal. But I’m still 
curious if you can think about– Is there a way to 
compare them without doing anything to them?

S: I guess we can, let’s say, I don’t know. Okay. So let’s 
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say 
a

5
 and 

a

8
 are two pies and they’re the same size. 

If you cut one into 5 pieces and you grab a slice, it’ll 
be bigger than the other pie if you cut it to 8 pieces, 
and you grab a slice.

I: Great. So three different ways to compare.
Other glimmers of hope came when we explained to 

students how to use decomposition and the distributive 
property to do mental multiplication. We demonstrated 
that 22 × 13 can be thought of as (20 × 13) +  (2 × 13) and 
then asked students to compare that to what they had done 
when they had solved 13 × 22 using the standard algorithm 
(for which they normally placed 13 above 22 before they 
multiplied). Student #8 (enrolled in Elementary Algebra) 
discovered at this point why there’s a “0” in the second 
partial product of the algorithm, and wondered aloud why 
he had never noticed it before. By presenting a second 
method for solving, he gained not only another tool in 
his repertoire, but also gained a deeper understanding of 
the standard algorithm. The algorithm was no longer a 
set of random steps. From this we see that there are many 
benefits to exploring multiple solution methods and to 
examining how they relate to one another and to their 
underlying mathematical ideas. In the interviews, we set 
up the potential for discovery and even without making 
a further effort to teach, a student learned. Imagine then, 
what can happen in a classroom when an effort is made to 
surface and explore connections.

Directions for Future Work
Our interviews with community college 

developmental math students cannot be used to fully 
substantiate our image of where they are and how they 
might have gotten there. Nor can we know that our 
suggestions will prove effective. We are, after all, only 
at the beginning of our journey toward understanding 
what’s going on with these students, mathematically 
speaking, and how we might be able to change it. We 
hope that future work will seek to address questions 
such as whether community college is too late to draw 
upon students' intuitive concepts about math. Do those 
concepts still exist?  Is community college too late to 
change students' conceptions of what math is? To what 
degree will students resist a different approach to math 
teaching and how difficult a task will re-socialization 
be? (Furthermore, how difficult will be the task of re-
socialiazing instructors?) If we can change students' 
beliefs about the nature of mathematics, will it have an 
effect on their disposition to reason? To what degree does 
better conceptual understanding impact the successful 
application of procedures? When students have a 

disposition and the tools with which to reason, do they 
apply procedures more appropriately? Do they become 
bothered by inconsistencies in the results produced by the 
procedures they apply?

Future work needs also to focus on existing practice 
in community college math classrooms which, to date, 
very little work has sought to describe. If there are select 
places where instructors are emphasizing concepts 
in their teaching, in what ways and to what degree is 
it effective? Finally, can some of our suggestions be 
implemented at the K-12 level and, if so, can we prevent 
students from having to enroll in community college 
developmental math classes in the first place?
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Appendix: Questions from the Interview Protocol

Opening
1. If someone is good at math, what exactly are they good at?  For example, some people say math is about 

remembering rules and procedures. Other people say it’s about understanding and reasoning. What do you 
think?

Mental Multiplication
2. 10 × 3 = ______

3. 10 × 13 = ______

4. 20 × 13 = ______

5. 22 × 13 = ______

6. 30 × 13 = ______

7. 31 × 13 = ______

8. 29 × 3 = ______

9. How would you do 22 × 13 it if you weren’t asked to do it mentally?

10. Why did you put a “*” [or ‘0” or blank] here? 

  
Reverse Operations

11. How would you check to see if the answer here is correct?
• If reworks problem: Is there another way to check?
• If no other way: Is there a way you can use subtraction to check?

12. Of these two numbers, 572 and 86 [written horizontally], which is larger?  How do you know?
• If ‘has more digits’: Can you always apply that rule?  What about 572 and 367?

13. Of these two numbers, 0.572 and 0.86 [written horizontally], which is larger?  How do you know?
• If ‘has more digits’: Can you always apply that rule?  What about 0.9 and 0.1111?
• If incorrect: correct student and ask if s/he can see why 0.9 > 0.1111.

14. Can you show me how you would set up 572 – 86? [written vertically]

15. Can you show me how you would set up 0.86 – 0.572? [written horizontally]
If incorrectly lined up: Is the placement of the decimals important? How did you decide where the decimals go?

22
× 13

66
22*
286

462
+ 253

715
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16. Can you show me how you would set up 0.572 – 0.86? [written horizontally]  
• If incorrectly lined up: Is the placement of the decimals important? How did you decide where the decimals go?

17. Here [in whole number subtraction] you lined up the 8 and the 7 and lined up the 6 and the 2. Here [in 
subtraction of decimals] you lined up the 5 and the 8 and lined up the 7 and the 6. Why is that?

Comparing Fractions and Placing Them on a Number Line

18. Which of these two numbers is larger 
a a
5 8
and ?  How do you know?

• If student struggles:  Could you try substituting a number for a?  Would that be a way to think about it?
• Will that work no matter what number you choose for a?

19. Which of these two numbers is larger 
4
5

5
8

and ?  How do you know?

• If 4 and 5 are closer together than 5 and 8:  What about these two numbers 
4
5

2
3

or ?

• If 
4
5

 is closer to 1: Tell me a little more about why that strategy works.

20. Can you draw a number line and place 
4
5

 and 
5
8

 on it?

 If student is not able to draw a number line, draw just this much:

21. Can you now add these numbers to it −
3
4

5
4

and ?

a and 1
3

 

22. What happens if you take a number and add 1
3

 to it?  

23. In this equation a x+ =
1
3

, do you think x is bigger than a, smaller than a, equal to a, or can you not tell.

24. What happens if you take a number and multiply it by 
1
3

?  

25. In this equation a x× =
1
3

, we’ll say that a is a positive, whole number. [Make sure that student understands 

that ‘×’ means to multiply.] Do you think x is bigger than a, smaller than a, equal to a, or can you not tell?

• If student struggles: What if you had 6 1
2

× ?

• If student gets it, return to a x× =
1
3

.

Closing
26. If you could give math teachers advice about how to teach in a way that would better help you understand math, 

what would you tell them?
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