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Abstract

Producing content-related gestures has been found to impact students’ learning, whether such

gestures are spontaneously generated by the learner in the course of problem-solving, or partici-

pants are instructed to pose based on experimenter instructions during problem-solving and word

learning. Few studies, however, have investigated the effect of (a) performing instructed gestures

while learning concepts or (b) producing gestures without there being an implied connection

between the gestures and the concepts being learned. The two studies reported here investigate the

impact of instructed hand movements on students’ subsequent understanding of a concept. Stu-

dents were asked to watch an instructional video—focused on the concept of statistical model—
three times. Two experimental groups were given a secondary task to perform while watching the

video, which involved moving their hands to mimic the placement and orientation of red rectangu-

lar bars overlaid on the video. Students were told that the focus of the study was multitasking,

and that the instructed hand movements were unrelated to the material being learned. In the con-
tent-match group the placement of the hands reinforced the concept being explained, and in the

content-mismatch group it did not. A control group was not asked to perform a secondary task. In

both studies, findings indicate that students in the content-match group performed better on the

posttest, and showed less variation in performance, than did students in the content-mismatch

group, with control students falling in between. Instructed hand movement—even when presented

as an unrelated, secondary task—can affect students’ learning of a complex concept.
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1. Introduction

In recent years, we have witnessed an increased interest in the role of gesture in teach-

ing and learning. In classrooms, gesture is commonly and spontaneously used by both

teachers and students as they carry out their educational activities (Alibali & Nathan,

2011; Kontra, Goldin-Meadow, Beilock, & Sian, 2012; Novack & Goldin-Meadow, 2015;

Richland, Stigler, & Holyoak, 2012). Although gesture can serve many functions—with

the most commonly studied being its use during problem-solving—our interest is in the

role that gesture plays in the development of conceptual understanding in complex aca-

demic domains.

Kita, Alibali, and Chu (2017), in an extensive review of the literature, cite a number

of studies in which spontaneous gestures have been found to impact learning. For exam-

ple, simply encouraging students to gesture while explaining their incorrect solutions to a

problem can facilitate learning (Broaders, Cook, Mitchell, & Goldin-Meadow, 2007) and

lead to the emergence of new ideas (Novack & Goldin-Meadow, 2015). Likewise, pre-

venting students from gesturing while problem-solving can hold them back compared

with students who are free to use their hands while they think (Alibali & Kita, 2010; Ali-

bali, Spencer, Knox, & Kita, 2011). Even just watching gestures in an instructional video

can impact students’ learning (Rueckert, Church, Avila, & Trejo, 2017; Son, Ramos,

DeWolf, Loftus, & Stigler, 2018).

It is not only spontaneously generated gestures that play a role in learning. Instructed

gestures—that is, those generated not spontaneously, but based on specific instructions—
can affect learning as well. For example, instructing participants to imitate content-related

gestures used by a presenter in an instructional video improved learners’ long-term recall

of anatomical structure names and locations compared with participants not instructed to

imitate gestures (Cherdieu, Palombi, Gerber, Troccaz, & Rochet-Capellan, 2017). And

students who were instructed to gesture about a strategy for solving a series of math

problems retained more of what they had learned a month later than students not

instructed to gesture (Cook, Mitchell, & Goldin-Meadow, 2008).

A growing body of evidence reveals that it is not just the general movement of the

hands, but the content of the gesture that is critical for learning. In one striking example,

participants instructed to perform a specific gesture designed to activate a correct prob-

lem-solving strategy outperformed participants instructed to perform a similar gesture rep-

resenting a strategy that was only partially correct (Goldin-Meadow, Cook, & Mitchell,

2009). Similarly, learners instructed to perform specific iconic gestures while repeating

novel words retained significantly more verbal material over time than learners instructed

to perform meaningless gestures (Kr€onke, Mueller, Friederici, & Obrig, 2012; Macedonia,

Mueller, & Friederici, 2010).

In most studies, instructed gestures are accompanied by speech and designed to serve a

direct, communicative purpose. However, some studies have shown that simply telling

learners to move their hands in a certain meaningful way—without accompanying speech,

or knowing the purpose of the hand movement, or even both—can produce an effect on

learning. Brooks and Goldin-Meadow (2016) showed children a series of math problems
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and asked them to move their hands in a fashion that was either relevant or irrelevant to

a strategy for solving the problem. They were not asked to solve the problem, only to

move their hands in prescribed ways. Children whose instructed hand movements repre-

sented a correct strategy benefited more from subsequent instruction on how to solve the

problems than children instructed to hold their hands in irrelevant positions.

Similar findings have been shown in the embodied cognition literature. A growing

number of studies have indicated that people understand and process information through

their physical movements, with those movements not only reflecting their cognition, but

also informing it (Dove, 2018; Walkington, Chelule, Woods, & Nathan, 2019; Wilson,

2002). Some studies have found a relationship between directed physical actions (e.g.,

posing) and participants’ interpretation and meaning-making. Both prompted and

unprompted posing (e.g., raising one’s arm to mimic a figure in a painting) helped with

participants’ meaning-making of the art piece (Steier, 2014). Not only can physical

actions help the interpretive process; they can sometimes even alter the interpretive pro-

cess. Smith (2005) found that toddlers who were given an object and asked to move it up

and down vertically judged the object they were holding to be more similar to a similar

but taller object than to a similar but wider object. (Toddlers asked to move the object

back and forth horizontally showed the opposite result.)

Two studies, in particular, bridge the embodied cognition literature and the gesture lit-

erature. Thomas and Lleras (2009) found that participants instructed to perform arm

movement exercises related to a strategy for solving Maier’s two-string problem were

later more successful in solving the problem than were participants completing different

arm movement exercises. Similarly, Nathan et al. (2014) found that participants who were

instructed to perform arm movements related to a particular strategy for solving of a

mathematical task were more likely to develop key insights into the problem than were

participants who were asked to perform random arm movements.

In the research discussed so far, the instructed gestures studied were related to solution

strategies for specific kinds of problems, and they often served a representational or com-

municative purpose. But our focus here is a little different. Instead of focusing on prob-

lem-solving as the outcome, we are interested in the role that instructed hand movements

can play in improving students’ conceptual understanding in complex domains. In this

sense, our study is similar to that of Ping and Goldin-Meadow (2008), who investigated

the role teachers’ gestures played in students developing understanding of the Piagetian

concept of conservation. They found that instructions that included gestures representing

important dimensions of the context—in this case gestures that described the shape of a

glass—resulted in children learning more about conservation than children in a compar-

ison group who received only spoken instructions. These results demonstrate the potential

of gesture to facilitate abstract thinking and understanding, in addition to specific problem

solution strategies.

The research we report here is in the spirit of Ping and Goldin-Meadow. However,

instead of having students observe gestures delivered as part of verbal instructions, we

direct students themselves to move their hands in certain ways, and we investigate the

role such hand movements play in students’ developing understanding of the concept of
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statistical model. In addition, the hand movements students are asked to perform in the

current study do not serve any immediate communicative purpose for the learner; indeed,

learners are told that the instructed hand movements are extraneous to their comprehen-

sion of the concept, and only included as part of a multitasking study. Thus, the present

study will look at the effect of directing students to move their hands in ways that do and

do not map onto crucial features of an abstract concept, but without drawing participants’

attention to the mapping, or lack thereof.

1.1. The concept of a statistical model

The current work focuses on students’ learning of introductory statistics, a content area

with many abstract concepts and which often requires some scaffolding to expose under-

lying structures and contexts to students. Although students learn many statistical con-

cepts and procedures in typical introductory courses, they often have trouble seeing the

structure that ties everything together and, as a consequence, have difficulty transferring

their knowledge to new situations. Our interest is in how to leave students with a coher-

ent representation of the domain, and in the possible benefits of students using their hands

as an additional resource to support understanding (Fries, Son, Givvin, & Stigler, 2020;

Son et al., 2018; Stigler et al., 2020).

In the studies reported here we focus on the concept of statistical model as a core con-

cept that can be connected to all parts of an introductory statistics course. Although most

people get introduced to the concept of modeling when they take graduate-level statistics,

the concept is rarely taught in the introductory undergraduate course. The current studies

are situated within a broader project in which we are exploring what it would look like to

teach everything in connection with modeling, and then to understand the effects of such

an approach on students’ understanding and transfer (Stigler et al., 2020; Son, Blake,

Fries, & Stigler, 2020).

When we first introduce students to the arithmetic mean, we teach it as the simplest of

all statistical models. All of our students know how to calculate a mean, but they never

have thought of it in terms of modeling. A statistical model, in simplest terms, is a func-

tion that can be used to generate a prediction about a future observation. If we randomly

choose one more observation from a population, our best prediction of what it will be,

assuming that we want to reduce error and that we know nothing else, is the mean. As

soon as we cast the mean as a statistical model, we can see variation around the mean as

error, and we therefore introduce concepts such as Sum of Squares and Standard Devia-

tion as statistics used to quantify the amount of error around a model. From that point,

we connect everything to the overarching idea that DATA = MODEL + ERROR.

In the instructional video students watched in the current studies, we introduced them

to the concept of statistical model (as outlined in the previous paragraph), and then pro-

ceeded to develop a slightly more complex model, which we called the two-group model.

Using the two-group model, we based our prediction of a future observation on the group

from which the observation would be drawn (i.e., from one of two levels of a categorical

predictor variable). If we are looking at thumb length in millimeters as a function of sex,
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for example, our two-group model would simply predict the mean of females for a newly

selected female, and the mean of males for a newly selected male.

In the video, we present distributions using histograms, helping students to see where,

in a histogram, they can see the model, and where they can see the error. We chose his-

tograms because we know from other research that students often misinterpret the mean-

ing of the vertical axis on a histogram (delMas, Garfield, & Ooms, 2005). However, the

vertical axis on a histogram actually represents the number of observations falling within

a particular range of scores, a common misconception among students is that it represents

the value of scores on the outcome measure being graphed. This prior research helped us

to think about the kinds of gestures that might be useful for helping students overcome

their misconceptions by directing hand movements to certain features that are important

to conceptual understanding.

1.2. Overview of the study

In the two studies reported here, we asked whether instructing students to place and

move their hands in specific ways while watching a video can impact their understanding

of, and learning from, the video. The video is distinctive in that it does not intend to

teach students to solve a particular kind of problem, but instead was designed only to

increase understanding of a concept, in this case the concept of statistical model, as

described above. We wanted to explore hand movement without any relation to either

speech production or the goal of solving a particular type of problem. Our outcome mea-

sures focused on understanding the concept of statistical model and extending the concept

to a new situation.

Participants were brought into the laboratory and asked to watch an instructional video.

They watched the video three times and were told at the outset that they would be tested

on the content at the end. Participants were also told that the goal of the study was to

assess the effect of multitasking on learning, so as to obfuscate its actual intent. Students

in the experimental conditions were asked to perform a secondary task while watching

the video. That task involved placing their hands in front of the video in alignment with

one or two red, rectangular bars that appeared superimposed on the video and moving

their hands to follow the bars as they moved around the screen.

In one condition (the content-match condition), the red bars led participants to place

their hands in a way that could support a connection between the concept being explained

and the histogram being shown in the video. For example, when the video talked about

the distribution having a larger variation, the content-match condition would first place

their hands in the middle of the distribution and then simultaneously move their left hand

to the left and right hand to the right, representing the idea of variation. In a second con-

dition (the content-mismatch condition), the red bars were placed in a configuration oppo-

site to that of the content-match condition, thus leading participants to place their hands

in a way that was not supportive of the concept being explained. For example, during the

discussion of the variation in a distribution described above, the content-mismatch group

moved their hands up and down instead of left and right. Finally, in a third, control,
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condition, the video did not include red bars at all, and students were not given any

instructions about what to do with their hands. (See Fig. 1, e.g., frames from the video as

it appeared in the three conditions.)

If participants’ instructed hand movements serve only to orient their attention to the

video in a general way, then we would expect no difference between the content-match

and content-mismatch conditions, and students in both of these conditions would be

expected to learn more than those in the control condition simply because their hands are

directing their attention toward the slides in the video. However, if the specific orientation

of the hands matters—that is, if we have succeeded in designing instructed hand

Fig. 1. Example frames from the instructional video discussing the mean of a distribution (left), and the asso-

ciated instructed hand movements, for control, content-match, and content-mismatch conditions.
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movements to help overcome students’ possible misconceptions—then we would expect

more learning from students in the content-match condition than in the content-mismatch

condition. Students in the content-mismatch group would perform worse than those in the

control group to the extent that the prescribed hand movements in that group reinforce

their misconceptions.

If, on the other hand, students must perceive a representational or communicative pur-

pose for their instructed hand movements or if the hand movements have to activate a

problem solution strategy in order to affect learning, then we would expect students in

the control condition to learn just as much as students in the experimental conditions. In

fact, control students might learn more than those in the experimental conditions to the

extent that instructed hand movement without a clear purpose truly does amount to multi-

tasking, taking resources away from the primary task of understanding the video. If we

observe that the content-match group outperforms both the control group and the content-

mismatch group, it will suggest that hand movements are not only useful as a means of

suggesting a solution strategy in the context of problem-solving, but also can provide an

important resource to help with the construction of understanding. This will, in turn, shed

light on how instructed hand movements might be used in the teaching and learning of

abstract ideas in complex domains.

2. Study 1

2.1. Methods

2.1.1. Participants
The participants were 60 undergraduate students from the University of California, Los

Angeles (UCLA). They were a diverse sample, with an ethnic composition similar to that

of UCLA as a whole (28% Asian, 27% White, 22% Latino, 3% Black). They participated

in the experiment either to fulfill a course requirement or to get extra credit, and they did

not receive any other form of compensation for their participation. The only exclusion

criterion was that they could not have taken Psychological Statistics with specific profes-

sors because the content presented in the study was taught in those classes. All partici-

pants had normal or adjusted-to-normal vision and were able to stand for 40 min without

impairment. They were all fluent in English and able to understand the instructions

clearly.

2.1.2. Materials and procedure
Procedure: Participants were randomly assigned to one of the three conditions (control,

content match, or content mismatch). After participants signed the consent form, they

were asked to stand facing a monitor, above which was a camera, which recorded them

from the waist up for the duration of the study. Participants read the instructions on the

monitor that introduced the study’s purpose: how multitasking affects learning from
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instructional video. Participants were instructed to try their best to understand the con-

tents of the video because there would be a quiz at the end. They were additionally told

that they may or may not be asked to engage in a secondary task while watching the

video (i.e., the multitasking part of the study).

After reading the initial instructions, participants in both the content-match and con-

tent-mismatch conditions were trained in how to perform the instructed hand movement

task. While watching the monitor, participants were shown a series of four slides on

which there appeared either one or two red bars. Participants were asked to align their

hands to match the placement of the red bars, moving their hands each time the bars

moved to a different position. In the control condition, participants did not receive any

hand-placement training. Participants in all three groups then watched the instructional

video three times in a row, either with or without the hand movement task (as prescribed

by their experimental condition).

Video: The video was 7 min and 10 s in length and consisted of an audio presentation

with accompanying slides introducing the concept of statistical model. The video started

with a simple one-group model (i.e., using the mean as a model) and then moved on to

introduce a two-group model. The audio and slides were identical across the three condi-

tions except for the red bars, which indicated, for the two experimental groups, where

participants should place their hands. Fig. 1 shows an example frame from the video as it

appeared in the three conditions, along with photos showing examples of how participants

were instructed to place their hands as they watched the video. In the experimental condi-

tions, the red bars appeared at 18 time points during the span of the video.

Decisions about the timing of the red bars and where to place them in the content-

match condition were guided by observing the gestures produced by the presenter when

initially recording the audio and by research on how students understand and interpret

histograms (delMas et al., 2005). When the presenter used a gesture to connect a graph

with a concept—such as holding her hand in a vertical position to indicate the middle of

the distribution pictured in Fig. 1, or moving her hands from the middle to the left and

right to represent variation—we inserted a red bar that would place the participants’ hand

in approximately the same position (see middle panel of Fig. 1). Thus, during the study,

participants would be placing and moving their hands in roughly the same position that

the presenter had used when creating the audio stimulus.

Red bars in the content-mismatch condition were placed in a contradictory position (as

in the lower panel of Fig. 1), close in location but opposite in orientation to the bar in

the content-match condition. (All three versions of the video are available online: http://

bit.ly/2BIyOPL; a transcript of the audio portion of the video is included in Appendix A.)

Because the position of the red bars depends on the content being discussed, we did not

control for the particular orientation of the hands. Although the hand(s) was/were always

paused in a vertical orientation in the content-match condition and in a horizontal orienta-

tion in the content-mismatch condition, the direction in which the hands moved to follow

the red bars in the video varied. In both conditions, participants moved their hands in

both vertical and horizontal directions.

8 of 30 I. Zhang et al. / Cognitive Science 45 (2021)

http://bit.ly/2BIyOPL
http://bit.ly/2BIyOPL


2.1.3. Posttest measures
After watching the video for the third time, participants answered, verbally, a set of

nine questions (five multiple-choice and four free response; see the complete list of postt-

est questions in the Supplementary Material file). The questions were presented, one at a

time, on the monitor, and in the same order for each participant. The questions either

asked students about the concepts discussed in the video or required participants to apply

what they had learned in the video to a new situation. For each of the multiple-choice

questions, participants were asked not only to select the correct answer but also to explain

their selection.

Participants were videotaped throughout the experiment from a point behind the moni-

tor. Their answers to posttest questions, as well as their instructed hand movements and

gestures, were coded from the video by four trained coders. The coding of the gestures

was conducted separately from the coding of posttests, and coders remained blind to con-

dition. For each multiple-choice question, coders recorded both the correctness of the par-

ticipant’s choice and the quality of their explanation. Coders judged the quality of each

multiple-choice explanation and free response answer using a 3-point scale: 2 points for

responses that were both relevant and correct; 1 point for responses that were relevant

but only partially correct; or 0 points for responses that were neither relevant nor correct.

At least two coders coded each participant’s video, with coding disagreements discussed

by the four coders in weekly meetings until a consensus was reached.

Each participant was assigned four outcome scores based on their responses to the

posttest questions:

• Number correct on multiple choice (MC Correct): One point for each of the five

questions answered correctly; possible range from 0 (none correct) to 5 (all cor-

rect).

• Quality of explanations for multiple choice (MC Explain): Score of 0 to 2 for

each of the five explanations; possible range from 0 to 10.

• Quality of answers to free response questions (Free Response): Score of 0 to 2

for each of the four free response questions; possible range from 0 to 8.

• Total score on posttest questions: Sum of each of the previous three subscores;

possible range from 0 to 23.

2.2. Results

2.2.1. Effect of condition on posttest performance
The distributions of total posttest scores for the three conditions are presented in

Fig. 2. Participants in the content-match group scored higher than those in the other two

groups. A one-way ANOVA found a significant effect of condition on total score (F(2,
56) = 4.56, p = .015). Pairwise contrasts showed that the content-match group scored sig-

nificantly higher than the content-mismatch group (t = 3.12, p = .003) but not signifi-

cantly higher than the control group (t = 1.83, p = .076). There was no significant

difference between the control group and the mismatch group (t = 1.22, p = .231).
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We next analyzed the three component subscores separately in order to better under-

stand the source of the effect. In general, the pattern of results looked similar across the

three subscores: Content-match scores were highest, followed by control, with content

mismatch the lowest, in all cases (see Table 1). Overall Fs were significant for MC Cor-

rect and Free Response, but not for MC Explain. Pairwise contrasts for both MC Correct

and Free Response showed a significant advantage of content match over content mis-

match. No other effects were statistically significant.

2.2.2. Variance in posttest performance across conditions
It appears from the histograms that scores in the content-match group were less vari-

able than those in the other two groups. Further analysis showed this pattern in both the

MC Correct and MC Explain subscores, but not in the Free Response scores (see

Table 1). Levene’s test for equality of variance showed this difference in variance to be

statistically significant for MC Correct overall (F(2, 56) = 3.28, p = .045). Pairwise

Fig. 2. Distribution of total scores, by group.
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comparisons showed variance within the content-match group was significantly lower

than within the content-mismatch group (F(1, 38) = 7.12, p = .011). Other pairwise dif-

ferences were not statistically significant: Content match versus control, F(1, 38) = 3.89,

p = .056; content mismatch versus control, F(1, 39) = 0.24, p = .631. For MC Explain

scores, Levene’s test for equality of variance showed the variance of the content-match

group to be significantly lower than both the control group (F(1, 38) = 4.21, p = .047)

and the content-mismatch group (F(1, 38) = 4.59, p = .039). There was no significant dif-

ference between the variance of the content-mismatch group and that of the control group

(F(1, 38) = 0.02, p = .903). There was also no significant difference of variance across

conditions for participants’ performance on free response questions (F(1, 38) = 0.42,

p = .659).

2.2.3. Gesture production during posttest
Participants answered all posttest questions verbally while standing in front of the

monitor on which the questions were presented. Although participants were not given any

instructions regarding the use of their hands during this phase of the study, most partici-

pants did produce spontaneous gestures while answering the questions. We wondered if

the previous instructions regarding instructed hand movements would affect the quantity

of gestures produced by participants while answering the posttest questions.

Fig. 3 shows the number of gestures participants produced while answering the ques-

tions. Participants in the control group produced the fewest gestures. A one-way ANOVA

found a significant difference across the three conditions in the number of gestures partic-

ipants produced (F(2, 56) = 5.17, p = .006). Pairwise contrasts showed that both the con-

tent-match group and the content-mismatch group performed significantly more gestures

while answering the questions than did the control group (t = 2.35, p = .024 and

t = 3.26, p = .002, respectively). There was no significant difference between the con-

tent-match and content-mismatch groups (t = �.62, p = .536).

2.3. Discussion of Study 1

Significant group differences were found for both multiple-choice and free response

questions. Participants in the content-match group scored significantly higher than those

Table 1

Posttest performance for overall score and three component subscores

Measure
Control

Content

Match

Content Mis-

match

Overall

ANOVA

Match Ver-

sus Mis-

match

M SD M SD M SD F p t p

Total score 14.20 4.03 16.26 2.88 12.60 4.27 4.56 .015 3.12 .003

MC correct 3.95 1.00 4.16 0.60 3.40 1.05 3.65 .032 2.79 .009

MC explain 6.50 2.24 7.32 1.38 6.05 2.31 1.95 .153

Free response 3.75 1.86 4.79 1.87 3.15 1.69 4.08 .022 2.87 .007
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in the content-mismatch group, with control participants falling between the other two

groups. In general, this pattern of results supports the interpretation that specific hand ori-

entation matters, even when students are not given a purpose for their instructed hand

movements. If the role of the hands was merely to draw attention to the slides, then con-

tent-mismatching placements should be as effective as the content-matching ones, but this

clearly was not the case. If the hand movement task interfered with learning (i.e., func-

tioning as a secondary task), then the control group should have scored higher. Again,

this was not what happened.

Something we did not anticipate, but which we find interesting, is the lower variation

observed in the content-match condition compared with the other two conditions for both

multiple-choice questions and explanations. We believe that this reduced variation among

the content-match group represents an asymmetry in the effect of matching gestures on

students’ thinking. If a student is already understanding the concept being explained, then

Fig. 3. Number of gestures produced during posttest, by group.
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they are not further helped by the matching gesture. But if they are struggling to under-

stand, then the gesture helps.

In this particular case, a student who has a correct understanding of the meaning of the

vertical axis of a histogram might not be distracted by a gesture that seems inconsistent

with their understanding. But a student who is struggling with this concept might need

the support of a matching gesture to nudge them toward a correct interpretation. If this

interpretation were correct, the reduction in variation in the content-match group would

result from the bottom students being brought up, not the top students being brought

down.

It is worth noting here that an educational intervention that simply asks students to

place and move their hands in certain orientations during instruction—even if the move-

ment makes no sense to them yet—could constitute a small step toward the elusive goal

of reducing gaps between high and low achievers, especially in STEM fields. Although

this tiny intervention might have no more than a limited positive impact on the learners

at the high end of the distribution, it does appear to help the struggling students. Indeed,

OECD (2012) has suggested that the reduction of such gaps, while improving achieve-

ment overall, should be a core part of our definition of what it means to be a high-

performing educational system.

Students in both the content-match and content-mismatch groups gestured more while

answering the posttest questions than did students in the control group. This made sense

to us, given the lack of mention of hand movements in the instructions provided to con-

trol participants. A possible mechanism—multimodal gist representation—was discussed

by Galati and Samuel (2011). They found that participants were more likely to encode a

target action required by the study in their own gestures if they had seen a gesture about

the action before, and more so if the gesture they saw was congruent than if it was incon-

gruent. (It is worth noting that in our study, both content-match and content-mismatch

conditions produced more gestures than the control.) They speculated that the mechanism

behind this may be that students activated and relied on their multimodal gist representa-

tion of the video content in their gesture because they had seen gestures when those rep-

resentations were formed.

In our study, participants performed gestures rather than observing them. However,

because performing gestures has been shown to be more powerful than simply observing

gestures (Wakefield, Hall, James, & Goldin-Meadow, 2018), the same mechanism may

hold (or be even stronger). Because students in the two experimental conditions in our

study performed gestures during encoding, they may have relied more on their multi-

modal gist representation of the content than students who did not perform any gestures.

This mechanism helps to explain the surprising finding that some of the students in the

content-mismatch group actually produced content-mismatching gestures—the gestures

they had been asked to mimic in their instructed hand movements—when answering the

posttest questions, even though such gestures worked against their understanding of the

concept. For example, they moved their hands up and down vertically when talking about

variation within a group, consistent with the aforementioned misconception about the
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meaning of the vertical axis. They might have been relying on their multimodal gist rep-

resentation of the video content, however, erroneous.

Participants in the content-mismatch group seemed to raise questions at the end of the

experiment more often than did students in the other two groups, although we did not for-

mally measure this. In particular, they asked questions to try to make sense of the

instructed hand movements they were instructed to make, trying to figure out how they

related to the content of the video. Even though these students were explicitly told that

the instructed hand movements were a secondary task, they may nonetheless have

believed that they were related to the video. Thus, aside from the multimodal gist repre-

sentation hypothesis, it is also possible that the higher number of gestures produced by

the content-mismatch group while answering the posttest questions may have resulted

from an attempt to integrate the instructed hand movements they had made during the

experiment with their understanding of the concept of statistical model because they

believed the movements to be related to the content. These all revealed to us the impor-

tance of having a posttest question that measures participants’ perceptions of the purpose

of the study—an omission we remedied in Study 2.

3. Study 2

The primary aim of Study 2 was to replicate the posttest results with a larger sample.

It was our hope that having greater power would enable us to differentiate the control

from one (or both) of the experimental groups. We also wanted to ask students about

their prior experience with statistics, and afterwards, their perceptions about our interven-

tion. Finally, we wanted to revise the protocol to one that was easier to run, requiring less

input from an experimenter. So, instead of participants standing in front of a video cam-

era, the study was automated, with participants interacting one-on-one with a laptop on

which materials were presented.

3.1. Methods

3.1.1. Participants
The participants were 148 undergraduate students from the University of California,

Los Angeles (UCLA). (A power analysis using standard errors from Study 1 indicated

that we could detect an effect size of 0.3 on posttest scores, with power of 0.90, with

sample sizes of n = 48 in each group.) As with Study 1, their ethnicity was represen-

tative of the UCLA population as a whole. Participants who had taken Psychological

Statistics with specific professors were excluded because the content presented in the

study was taught by those professors. We also excluded students who had participated

in Study 1. All participants were fluent in English and able to use a laptop to com-

plete the study.
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3.1.2. Materials and procedure
Participants were randomly assigned to one of the three conditions (control, content

match, or content mismatch). Six laptops were setup in the laboratory, with two laptops

designated for each condition. The study was hosted on Qualtrics and administered com-

pletely through the laptops. After participants entered the laboratory, they were instructed

to sit in front of a laptop and to remain seated throughout the study. Similar to Study 1,

students read the instructions on the laptop.

After answering the presurvey, participants in the two experimental conditions com-

pleted a brief training video in which they practiced moving their hands to match the red

bars that appeared on the laptop screen, as described in Study 1. The training in Study 2

included additional written instructions in the video to replace instructions provided by

the experimenter in Study 1 (e.g., telling participants they could use either hand in seg-

ments where there was only one red bar). Participants in all three groups then watched

the instructional video three times in accordance with their assigned condition.

As in Study 1, participants in the two experimental groups engaged in the hand move-

ment task while watching the video. The videos and instructed hand movements were

identical to those used in Study 1. (See Fig. 4 for an image of the laptop station setup.)

After each viewing of the video in Study 2, participants were asked to rate how much of

the video they understood. Participants wore headphones and barriers were placed

between them to minimize distractions.

3.1.3. Posttest measures
After watching the video three times, participants completed a posttest. The posttest

contained the same five multiple-choice questions as in Study 1. (Because in Study 1

Fig. 4. The experimental setup for Study 2. A student is watching video (slides plus audio) on a laptop

screen, while holding her hands to match the red bars.
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results from the free response posttest questions were consistent with those from the

multiple-choice questions, we used only the multiple-choice questions in Study 2.)

Participants saw the questions one at a time and were not able to go back to change their

answer once they proceeded to the next question.

After completing the five multiple-choice questions, participants were asked, in an

open response question, what they thought was the purpose of the study. Finally, partici-

pants in the two experimental groups received one additional question asking them, in

open-response format, whether they thought the instructed hand movements were helpful

for their learning of the content.

Eighteen participants were excluded from the study because they either failed to pay

attention to the video (e.g., they fell asleep or appeared distracted), or because they did

not follow the study instructions correctly. The latter situation included such behaviors as

not performing the requested hand movements, not performing the hand movements cor-

rectly, or watching the video more or fewer than three times.

Multiple-choice questions were auto-scored by Qualtrics and yielded a total number

correct from 0 to 5 for each student. Answers to the question of what the students

believed the purpose of the study to be were coded into one of four mutually exclusive

categories: how repeated video watching influences learning or memory; how multitask-

ing (while watching video) relates to learning; how hand movements, or physical actions

influence learning; and other. Answers by students in the two experimental groups to the

question of whether they felt the instructed hand movements were helpful to their learn-

ing were coded as either helpful or unhelpful. Open response questions were coded by a

single coder, blind to condition.

3.2. Results

3.2.1. Posttest scores
The distributions of posttest scores for the three conditions are presented in the

right panel of Fig. 5. (Study 1 results are presented in the left panel, for purposes of

comparison.) Participants in the content-match group scored higher than those in the

other two groups. A one-way ANOVA found a significant effect of condition on posttest

score (F(2, 127) = 5.67, p = .004). Pairwise contrasts showed that the content-match

group scored significantly higher than both the content-mismatch group (t = 3.37,

p = .001) and the control group (t = 2.54, p = .013). There was no significant

difference between the control group and the content-mismatch group (t = 0.83,

p = .407).

The distribution of posttest scores looks highly similar across the two studies, but dis-

tinctly different across the experimental conditions. The similarities in distributions across

the two studies are particularly noteworthy because of the difference in experimental pro-

cedures between the two studies. In Study 2, students were sitting down instead of stand-

ing up, and holding their hands over a laptop screen instead of in front of a larger

monitor.
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3.2.2. Variance in posttest performance across conditions
One interesting finding from Study 1 was that the content-match condition not only

improved learning but also reduced variation, apparently by raising the performance of

students in the lower tail of the distribution. The reduction in variation was replicated in

Study 2 (see Standard Deviations in Fig. 5). Levene’s test of equality of variances was

not significant for Study 2 (Levene’s Statistics = 1.884, p = .156). However, given the

distribution of the posttest scores in this study—that is, all students scored one of four

scores (2, 3, 4, or 5)—it might be that Standard Deviation is not a sensitive enough indi-

cator of variability in this case.

Looking at the middle panel of Fig. 5, it is clear that the percentage of students scoring 2

or 3 is attenuated in the content-match condition compared with both of the other conditions

(2.3% in the content-match condition vs. 27.9% in the content-mismatch condition and

30.2% in the control). A comparison of 10,000 randomly bootstrapped pairs of samples

(n = 44 and n = 43) showed that the differences between the percentage of students scoring

below 4 in the content-match condition versus the other two conditions were highly unlikely

to have occurred by chance (p < .002). It is also possible, however, that this reduction in

variance is due to a ceiling effect for students in the content-match group.

3.2.3. Perceived purpose of the study
A chi-square test of independence revealed a significant relationship between the con-

dition participants were in and what they perceived to be the purpose of the study (v2(6,

Fig. 5. Distributions of posttest scores by condition for Study 1 (left) and Study 2 (right).
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130) = 66.82, p < .001). As seen in Table 2, this was mainly due to the difference

between the control group and the other two groups. Because control participants were

not assigned a hand movement task, they naturally thought the study was about the effect

on learning of watching a video multiple times. Students in the content-match group more

frequently guessed the purpose to be to investigate the role of instructed hand movements

in learning, whereas students in the content-mismatch group were more likely to believe

us when we told them the focus was on multitasking. This difference between the two

experimental groups, however, was not statistically significant (v2(3, 87) = 7.12,

p = .068).

3.2.4. Did students who correctly guessed the purpose of the study learn more?
One of our research questions was whether students needed to be aware of the possible

helpfulness of the instructed hand movements in order to benefit from them in learning.

Although we specifically told participants that the hand movements were not related to

the content of the video, some participants did not believe us by the end, correctly guess-

ing that the hand movements were intended to affect learning. Did these participants,

who correctly guessed the purpose of the study, benefit more from the instructed hand

movements than the other (clueless) participants?

To answer this question, we looked at posttest performance of students who did versus

did not guess that the hand movements were designed to impact their learning in some

way. The results broken down this way are presented in Fig. 6, with those who guessed

the purpose in the bottom row. The distributions of outcome scores for students in both

the content-match and content-mismatch conditions look remarkably similar between

those who guessed and those who did not. A two-way ANOVA revealed a main effect for

condition (F(1, 84) = 4.92, p = .004), but not for perceived purpose (F(1, 84) = 0.55,

p = .460).

3.2.5. Perceived usefulness of the instructed hand movements
Students differed across the two experimental conditions in their opinions of how use-

ful the assigned hand movements were for learning. Eighty-two percent of the students in

the content-match group found the hand movements helpful, compared with only 44% in

the content-mismatch group. This difference was statistically significant (v2(1,
87) = 13.25, p < .001).

Table 2

Percentage of participants in each group reporting each of four different perceived purposes of the study

Perceived Purposes

Hand Movements/

Physical Actions Multitasking Other

Repeated Video

Watching/Memory

Control 0.0 2.3 16.3 81.4

Content Match 34.1 22.7 22.7 20.5

Content Mismatch 21.0 48.8 11.6 18.6
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Similar to the comparison of those who guessed the purpose of the study and those

who did not, we also compared performance on the outcome test between students who

found the hand movements useful and those who did not. Results are presented in Fig. 7.

Just as with the previous analysis, the distribution of outcome scores did not appear to

differ based on whether they reported the hand movements as useful or not for learning,

for either the content-match or content-mismatch conditions. A two-way ANOVA found a

main effect for condition (F(1, 84) = 10.38, p = .001), but not of perceived usefulness (F
(1, 84) = 0.11, p = .736).

3.2.6. Students’ self-ratings of their understanding
After each viewing of the video, participants rated their understanding of the video on

a 100-point scale. The results are shown in Fig. 8. The content-match group and the con-

tent-mismatch group showed an overall upward trend, as expected. That is, they reported

understanding a little more after each successive viewing of the video. After their second

viewing, all participants in the content-match group and 91% of participants in the con-

tent-mismatch group rated their level of understanding as either the same or higher than

they had rated it after their first viewing. Furthermore, 93% of students in those groups

continued the upward trend after their third viewing.

The control group, on the other hand, showed a different pattern. Although they

tracked with the other two groups after the second viewing of the video, they reported a

Fig. 6. Distributions of posttest scores, by condition, for participants who correctly guessed the purpose of

the study (top) and participants who did not (bottom).
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steep downturn in their understanding after the third viewing, with 33% of the partici-

pants rating their understanding as lower after watching the video for the third time than

they did after the second time through. This pattern was confirmed by a 3 within-subjects

x 3 between-subjects ANOVA, which found a significant time by group interaction, F(4,
254) = 13.495, p < .001. Our interpretation of this result is that control participants felt

frustrated at having to watch the same video three times and acted out this frustration in

their ratings. Perhaps having had the hand-placement task to keep them busy prevented

the other two groups from feeling this frustration.

If we exclude time point three from the analysis (by running a 2 within-subjects 9 3

between-subjects ANOVA), we see a pattern in ratings of understanding, with main effects

for both time point (F(1, 127) = 76.71, p < .001) and condition (F(2, 127) = 4.827,

p = .010), and no interaction between the two (F(2, 127) = 1.128, p = .327). With time

point three excluded from the analysis, all three groups rated their understanding of the

video as higher after viewing it the second time than after viewing it the first time. The

content-match group (t = 2.20, p = .030) and control group (t = 2.86, p = .005) both

rated their understanding as higher than did the content-mismatch group, which is consis-

tent with their performance on the posttest. However, the content-match group’s ratings

were not significantly different from those of the control group (t = 0.60, p = .552), even

though they performed significantly higher than the control group on the posttest. The

correlation across the whole sample between ratings of understanding, averaged across

time points 1 and 2, and learning was r = .37, p < .001.

Fig. 7. Distributions of posttest scores, by condition, for participants who did not perceive them as helpful

(top) and participants who perceived the instructed hand movements as helpful.
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4. General discussion and conclusion

Across two studies, the ways in which participants moved their hands while they

learned a complex concept led to significant differences in their performance on a posttest

that required them to apply that concept. Specifically, participants who placed their hands

in ways that supported a correct interpretation of the content they were learning scored

significantly higher than those who placed their hands in ways that supported a common

misconception of the concept (or which were otherwise misaligned with a correct inter-

pretation). Thus, hand orientation matters for learning, even when students are not given

a communicative purpose for their instructed hand movements. In large part, prior work

has focused on gestures that represent or hint at solution strategies in a problem-solving

context. However, the two studies reported here demonstrate that instructed hand move-

ments that simply reinforce visual representations of key ideas can help students better

understand difficult concepts in statistics, apart from any particular problem-solving task.

The current studies extend the literature in an additional way. Prior work has shown that

learning can be impacted by spontaneous and/or co-speech gestures (i.e., the gestures that

people generate to accompany what they say; Andric, & Small, 2012). Our studies show

that hand movements that occur independent of both the performer’s speech and the per-

former’s knowledge of their purpose can also facilitate learning.

In both Study 1 and Study 2, participants performed instructed hand movements with-

out speaking. When, in Study 2, participants were queried about what they perceived to

be the purpose of the study, the majority misidentified it as being about the effect of

repeated video watching or multitasking. Thus, purposeful generation of hand movements

Fig. 8. Average self-ratings of how well participants in each group “understood the video” after each of the

three viewings.
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to accompany speech is not a necessary condition for hand movements to impact learn-

ing. Learners do not even need to understand the meaning of their instructed hand move-

ments in order for their learning to be enhanced.

If the effectiveness of gesture lies not in its suggestion of a solution strategy, nor in its

co-occurrence with speech, nor in its spontaneous generation, nor even with the per-

former’s understanding of its purpose, what mechanism might explain its effectiveness?

Findings from the embodied cognition literature support the idea that people’s bodily

movements, even purposeless instructed hand movements without accompanying speech,

can impact cognition and learning (Smith, 2005). However, whereas the bodily move-

ments from previous studies have been related to a specific problem-solving strategy or

emotional signal (Kraft, & Pressman, 2012), the instructed hand movements in our studies

are simply representations of central features of an idea or concept.

Our findings showed that the content-match group participants’ physical representation

of an important idea may have served to support their integration of this idea into their

efforts to understand a concept. Similarly, the fact that the content-mismatch group per-

formed worse on the posttest might be due to the reinforcement of a misconception acti-

vated by their instructed hand movements. For the content-mismatch group, it might even

have been that incongruence between the audio to which the participants listened and the

instructed hand movements they were asked to produce did, in fact, turn their activity

into multitasking. The extra cognitive load may have dampened their learning.

This finding has implications for the design of mathematics learning technologies.

Goldstone, Marghetis, Weitnauer, Ottmar, and Landy (2017) point out the importance of

taking perceptual and spatial information into account when developing new technologi-

cal tools designed to teach students about mathematical expressions. Use of perceptual

and spatial information can help students develop valid intuitions and overcome miscon-

ceptions. Our finding suggests that an intervention as simple as placing your hands at the

right place can help students learn to interpret histograms. The finding might extend

beyond statistics education to education in general. It supports the use of instructed hand

movements as a resource for teaching abstract ideas in complex domains. Activating the

learners’ physical representation of the concept appears to help with their construction of

conceptual understanding.

Another contribution of the present pair of studies is derived from analyses of partici-

pants’ self-ratings of their understanding. Across the three video viewings, for the two

experimental groups, the trajectory of perceived understanding played out as one might

expect: Self-ratings of understanding increased with each video viewing. If it is true that

matching instructed hand movements to content improves learning, and if participants can

accurately assess their own levels of learning, one would expect significant differences

between the perceptions across groups and across time, favoring participants in the con-

tent-match group. This, too, was borne out in the data.

What is perhaps more interesting is how control group participants’ self-ratings of

understanding compared to those of the experimental group participants. In a pattern

markedly different from the experimental groups, the control group participants’ ratings

dropped precipitously from their second to third video viewing. It seems unreasonable
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to assume that they felt they understood the material in the video less well because of

the additional video viewing. What we think is more likely is that they were acting

out, frustrated by having to watch the video yet again. The interesting question is:

why did not participants in the experimental groups—the groups given something to

do while they watched the instructional video—respond in this way? We think it is

possible that the secondary task kept them engaged in the primary task. This serendipi-

tous finding has implications for creating learning activities for students that keep frus-

tration at bay and increase their willingness to continue to engage with instruction.

The studies reported here have other implications for learning environments outside of

the laboratory. Although Study 1 called for an experimenter to be present and for par-

ticipants to engage in a rather artificial learning setting, the procedures used in Study

2 demonstrated that students can profit from following hand movement instructions

even when they sit alone, watching an instructional video on a laptop. Future studies

of online learning from video should test this application further, adding hand move-

ment instructions to teaching materials in other domains in which concepts can be rep-

resented visually.

4.1. Possible concerns, alternative explanations, and limitations

It is possible that, from the learners’ perspective, the animation of the red bars in the

videos could have served the same function as a speaker’s gestures would have. That is,

watching the red bars move was akin to watching a teacher’s hands move, and it was

watching the bar movement—not producing the hand movements—that led to group dif-

ferences in learning. Although we did not include a condition in which students watched

a video that included the red bars without moving their hands and thus we cannot distin-

guish in the current study the effect of seeing the bars from the effect of using them as

instructions for where to place one’s hands, we do not believe this explanation is likely.

Several studies have compared the effect of gesture with that of animated highlighting;

all have found that gesture produces better learning than does animated highlighting

(Bem et al., 2012; Louden et al., 2015). Furthermore, adding just animated highlighting

to videos of narrated slides has not been shown to improve learning compared with just

the voice and slides without the animation (Bem et al., 2012; Louden et al., 2015). Based

on these findings, we do not believe that the red bars served as a stand-in for a teacher’s

gesture.

Another issue stems from whether students believed the cover story about the study

being related to multitasking. From the post survey, we know that a majority of students

assumed that the purpose of the study was either multitasking or repeated video watching,

which suggests that they did not perceive a relationship between what they were doing

with the red bars and the concepts being taught in the video. But it is worth noting that

more students in the content-match condition (34.1%) perceived the purpose of the study

as being related to gesture or hand movement than did students in the content-mismatch

condition (21%). The concern is that even a 13% difference in perceived purpose of the

study could have driven the difference in the outcome measures. If correctly guessing the
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purpose of the study had a significant impact on students’ learning, then we should see a

difference in posttest scores between students who had correctly guessed the purpose of

the study and students who did not. However, neither the set of posttest histograms nor

our statistical analysis revealed such differences, suggesting that even for the students

who detected the purpose of the study—and perhaps even the relationship between the

red bars, the corresponding hand movements, and the video concept—their correctly

guessing the purpose of the study did not lead to better posttest performance.

In addition, because we designed the timing, position, and direction of the gestural

instructions (i.e., the red bars) based on the instructor’s spontaneous gestures and com-

mon student misconceptions, one limitation of our design is that we did not control for

the orientation of the red bars. The static hand position was always vertical for the con-

tent-match condition and horizontal for the content-mismatch condition. Thus, another

possible explanation for the observed differences in posttest performance across groups is

that they were caused by the particular position in which the hands were placed. Students

in the content-match condition always positioned their hands vertically, whereas students

in the content-mismatch condition always positioned their hands horizontally. Positioning

hands horizontally could have interfered with students’ ability to process the vertical lines

in the histogram (e.g., the lines for the means or the bins of the histograms), which would

place the content-mismatch condition at a disadvantage, compared not only to the con-

tent-match condition, but also to the control condition.

The two studies reported here have several other limitations that need to be considered.

First, data were collected from participants during a single laboratory session, thus pre-

venting us from making claims about long-term retention of concepts learned, and from

knowing how the intervention might play out in a live classroom environment. Also, data

were collected from a narrow sample of students: undergraduates enrolled in a small

number of psychology classes. Especially because the intervention appeared particularly

effective for students with lower levels of understanding, extending the subject pool to a

more diverse population is worthy of investigation.

4.2. Future directions

Many questions, of course, are left unanswered. We find the decrease in variation of

the posttest scores of the content-match group interesting, because it indicates that

instructed hand movements that match the content of the instruction can help some peo-

ple more than others. In future studies, we are interested to see if instructed hand move-

ments are more powerful in helping students with less incoming knowledge or with more

misconceptions about the concept being taught. Because the decrease in variation of the

posttest scores might be attributable to a ceiling effect, we would like to design more dif-

ficult posttest questions (e.g., questions that require more transfer).

The finding of increased gestures in posttest questions for the two experimental condi-

tions in Study 1 is also worth further exploration. In particular, we are interested in inves-

tigating the degree to which students’ gestures are congruent with what they were

instructed to perform while watching the video and how that interacts with their learning.
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If Galati and Samuel’s (2011) theory of multimodal gist representation applies, then we

expect the gestures to be congruent with what participants were instructed to perform.

Moreover, we expect that among participants who were instructed to perform mismatched

hand movements, those who generate content-match gestures will demonstrate better

learning outcomes than those who continue to rely on their initial mismatch representa-

tions.

In the two studies presented here, participants were asked to watch the video three

times, which can be hard to enforce in real-life learning situations. Thus, we would like

to know what the effect of the instructed hand movements would be if participants watch

the video only once or twice to see if the effect is only manifested after some threshold

number of viewings. Related to this, we want to further explore the effect of instructed

hand movements on students’ self-ratings of their understanding. For example, will we be

able to replicate the effect hand movement tasks can play in preventing students from

becoming frustrated by repeated video-watching? And finally, we would like to extend

the work beyond the concept of statistical model to explore the effect of this type of ges-

tural intervention in different concepts and disciplines.

4.3. Conclusion

Our study demonstrates that instructed hand movements that are related to central fea-

tures of the underlying structure of the concept, but unrelated to a specific solution strat-

egy, can promote learning of abstract ideas in statistics. The study sheds light on the

possibility of using gestures not only as an additional pathway to deliver solution strate-

gies, but also as an additional resource for students to explore and understand abstract

ideas and develop conceptual understanding. In this framework, the use of instructed hand

movements in education makes students not passive recipients of information, but active

participants who can take advantage of instructed hand movements to promote their own

learning.
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Data S1. Video material for Study 1 and Study 2.

Appendix A: Transcript for the instructional video used in Study 1 and Study 2

Transcript of instructional video

So statistics is the study of variation. But then we need to really unpack, what is varia-

tion? And in statistics we often are not just talking about any old kind of variation; we’re

really talking about variation in data. And so let’s take this outcome variable that we’ve

measured out in the real world, and we can see there’s variation here. Let’s say we’ve

measured people on some outcome variable, and we can see that not all people are the

same; they vary. And so, even though a lot of people have around 61 or 62 as their score

on this outcome variable, there’s a bit of variation here. There are some people who are

scoring all the way up to 70, ans some people scoring all the way down to 50, and so,

there’s variation.

Now, if we had taken another measurement, we might see a very different pattern of

variation. For example, here we see a lot more variation in this distribution. They seem

to have roughly similar centers; for instance, it seems to be around 64, low 60s perhaps,

but there’s a lot more variation in this particular distribution. We see people scoring all

the way up to 80 and all the way down to 40. Now, what do statisticians do with this

variation we see in distributions? Often, we create a model, but that begs the question:

what is a model? And so in this case we’re just going to draw from our regular old

understanding of models. For instance, if we have a White House, the real White House,

we might create a scale model of it to help us understand some things about it. For

instance, this scale model is not the same as the White House; it’s not even the same

color, but from it we could represent certain parts of this White House. For instance, it

has four columns and the real White House has four columns.

Now, what do we do with a statistical model? It’s not just a small version of the distri-

bution. In fact, it’s just going to be simplified somehow and often it’s simplified by hav-

ing fewer things about that distribution. For example, a simple model is the mean as the

model of this whole distribution. It’s simpler because it’s just one number. This distribu-

tion has a whole bunch of numbers, but the mean is just one, simple number.

In this case, the mean seems to be around 64, and you can see that 64 is not a perfect

representation of this distribution. This distribution is a lot more varied, it has a lot more

details to it, and it totally misses this idea that some people scored 80 on this outcome
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variable. But it’s a good representation because it roughly captures something about this

distribution that’s important, namely the center of it.

Now, one of the things we could do with a simple statistical model is that we could

use it to predict the next data point that we gather from the world. Let’s say I told you,

“We’re going to go out there and measure one more person on this outcome variable.”

And given that you have no other information about this person, you might think, “Well,

maybe they’re going to be about 64 on this outcome variable.” It won’t be perfect, it

might be off by some amount, but this might be one of the better guesses that you could

make, given this information.

Now, there are going to be situations where that simple model is a better model and

some cases where it’s a worse model. Take, for instance, this top distribution; we could

see that because there’s less variation around the model, this model is quite a bit better.

But in this bottom distribution, there’s more variation around the model and because of

that, it’s not going to be quite as good of a prediction, not going to be quite as good of a

representative of this whole distribution. Now, one of the things we’re doing here is,

we’re making a subtle shift. Instead of just looking at how much variation there is; we’re

looking at how much error there is from the model. If you predict that the next person is

going to be 64, in the case of this top distribution here, you might not be off by that

much. Your error will be smaller. But if you guess, “This next person is going to be 64,”

and the bottom distribution is a good representation of the world, then you will be off by

more on average.

So let’s break down this idea of error from the model a little bit more concretely with

this one data point that we’ve colored white. So here we see this distribution, there’s

variation, and here’s this simple model, the mean, 64, but you can see this data point is

not exactly our model. Our model is wrong. Well, how wrong is it? We can represent

how wrong it is by this distance between the data point and the model. So you could

think of all data points as being made up of two components. You could think of each

data point as being, part of it is our model prediction, and part of it is how off that model

is from the actual data point.

Now that works well if the world is a simple place that could be described with just

one number, but let’s say that we know a little bit more about the world and its complex-

ity. Can we make our simple model a little more complex? Let’s say we know that this

distribution of people actually is made up of two different groups of people: the red

group and the yellow group. Now the red group, you can see, they vary, too. Just because

you’re in the red group doesn’t mean that you’re all the same and just because you’re in

the yellow group doesn’t mean that you’re all the same either. How can we make use of

this little bit more information that we have?

Well, one of the things you can see is that the red group, although it’s not exactly per-

fect, they tend to have lower scores on this outcome variable than the yellow group. And

that’s not true for every single person, but it’s kind of true as a whole. So if we put up

the means for the red and yellow groups, you could see that the red group’s mean is

smaller or lower than the yellow group’s mean. Now, one of the ways that we might use

that information in our two group model is by saying, “If I knew what group you came
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from, then I can make a different prediction about you.” So, if I knew that the next per-

son we are going to measure comes from the red group, we might say, “I predict that

their score is going to be a little bit smaller. Maybe their score is going to be around 61.”

But if I knew this person was going to come from the yellow group, I might make a dif-

ferent prediction. I might say, “I think this person’s score is going to be closer to 70.”

And so, this model is very similar to the simple model of the mean we saw before;

now we’re just using two means to represent the two different groups. And because of

that, we are going to call this the “two group model,” because it’s slightly more complex

than the one group model.
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