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A B S T R A C T   

Background: Most students struggle when learning to program. 
Aims: In this paper we examine two instructional tasks that can be used to introduce programming: tell-and- 
practice (the typical pedagogical routine of describing some code or function then having students write code 
to practice what they have learned) and prediction (where students are given code and asked to make predictions 
about the output before they are told how the code works). 
Sample: Participants were 121 college students with no coding experience. 
Methods: Participants were randomly assigned to one of two parallel training tasks: predict, or tell-and-practice. 
Results: Participants in the predict condition showed greater learning and better non-cognitive outcomes than 
those in the tell-and-practice condition. 
Conclusions: These findings raise a number of questions about the relationship between programming tasks and 
students’ experiences and outcomes in the early stages of learning programming. They also suggest some 
pedagogical changes to consider, especially in early introductions to programming.   

1. Introduction 

Computer programming is a complex skill with cognitive and non- 
cognitive challenges (McCracken et al., 2001). To develop flexible pro-
gramming skills, students need to learn programming syntax (Altadmri 
& Brown, 2015; Sajaniemi & Navarro-Prieto, 2005), understand pro-
gramming concepts (Bayman & Mayer, 1983; Cañas et al., 1994; Ma, 
2007; Ma et al., 2007; Sirkiä & Sorva, 2012), and coordinate and apply 
this knowledge to solve novel problems (see Qian & Lehman, 2017 for a 
review). Students also need to regulate emotions that arise during 
learning (Bosch et al., 2014; D’Mello & Graesser, 2011), maintain 
motivation and engagement, and persist in the face of failure (Renumol 
et al., 2010). 

The most common pedagogy for helping students to meet these 
challenges is what we might refer to as tell-and-practice (a phrase coined 
by Schwartz et al., 2011). With this pedagogy, students first watch as 
teachers explain some example code, and then try modifying or writing 
their own code to solve new problems. Tell-and-practice seems like a 
logical way to introduce students to programming and thus is a domi-
nant strategy. But is it the best pedagogy? 

In this paper, we consider the idea that certain aspects of the tell-and- 

practice pedagogy might negatively impact students’ cognitive and non- 
cognitive outcomes. We start with an informal task analysis considering 
how tell-and-practice instruction might be experienced by students just 
beginning to learn to code: where is their attention drawn and what 
information is encoded as important? We then consider how to draw 
their attention to more critical information using an alternative peda-
gogy where students predict the outcome of code rather than practicing 
writing code. Ultimately, we compare tell-and-practice, in a random- 
assignment experiment, to a pedagogy designed around making 
predictions. 

1.1. Cognitive and non-cognitive effects of tell-and-practice 

Let’s consider what students might experience during the "practice" 
portion of tell-and-practice. If students type in their code and it fails to 
run, it may be hard for them to identify exactly what went wrong (e.g., 
was it a missing comma? the wrong function? the algorithm was 
implemented incorrectly?). The primary focus for beginning students 
should be comprehending a given code’s function and why it produces a 
particular output, but novices often fail to identify these most critical 
features (Kaczmarczyk et al., 2010). They may be overly focused on 
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smaller errors such as syntactic mistakes. 
Using the wrong function should be considered a more fundamental 

error than a missing comma. However, a beginner may not have suffi-
cient prior experience to make this distinction. Thus, when a novice 
student writes code that produces an error message, they may not be 
able to tell whether their error is a major or minor one. Missing a 
quotation mark and selecting the wrong function may be perceived as 
equivalent to a novice because both cause the code to fail. Tell-and- 
practice may not effectively direct students’ attention to the parts of 
the code that are most important to learn. Even if students’ code runs 
successfully during "practice," they might not fully understand why the 
code succeeds. Studies have found that these minor and major errors are 
indicative of distinct skills (Corney et al., 2011; Venables et al., 2009). 
For example, missing a quotation mark only indicates that students do 
not flawlessly write syntactically correct code (Robins et al., 2003). But 
selecting the wrong function can be a more critical sign that students are 
struggling understanding the code’s purpose (Whalley et al., 2006). 

In the Structure of Observed Learning Outcomes (SOLO) taxonomy 
(Biggs & Collis, 2014), when a student is able to identify critical features 
and appreciate the function of code, that aligns with the highest level of 
this hierarchical framework, the relational level. At this level, students 
demonstrate that they can “see the forest” and explain the purpose of the 
code rather than focusing solely on the details ("the trees"). These higher 
order learning outcomes positively relate to students’ expertise and 
depth of understanding (Lister et al., 2006). Perhaps the pedagogy of 
introductory programming should consider how to help students ach-
ieve these higher order learning outcomes. Without guidance towards 
these critical learning outcomes, students may practice the details of 
code writing while leaving gaps in their functional knowledge of coding. 

Beyond these cognitive aspects of the learning experience, tradi-
tional tell-and-practice also has potential non-cognitive disadvantages. 
When their written code doesn’t run, students might experience nega-
tive emotions such as frustration. The inherently high cognitive load of 
learning to program (Groβe & Renkl, 2007; Sweller, 1994, 2010; Sweller 
et al., 2019; Zhu & Simon, 1987) may lead students to think the task is 
“too difficult,” or “too complicated,” and that the emotional cost of 
learning programming is too high (Flake et al., 2015). While receiving 
error messages and debugging code are inherent parts of coding, these 
negative emotions might lead students to interpret errors as signs of 
failure and incompetence. Frustration and perceived difficulty may 
cause students to form negative attitudes towards computer program-
ming as a subject, which may discourage them from future learning. 

Some might argue that confusion is a necessary part of learning. 
D’Mello and Graesser (2012) have posited that students experience 
cognitive disequilibrium and confusion when encountering impasses, 
anomalous events, obstacles to goals, and novelty. Faced with cognitive 
disequilibrium, students attempt to problem-solve. They are able to 
restore cognitive equilibrium if they effectively resolve the impasses. If 
they experience obstacles and cannot resolve the impasses (the feeling of 
being "stuck"), they are more likely to experience frustration which may 
lead to boredom and disengagement (Larson & Richards, 1991; Rob-
inson, 1975). In learning programming, not being able to figure out why 
their code does not run may trigger problem solving but may also lead to 
frustration, boredom, and disengagement. Especially early on in their 
programming experience, they may lack strategies to problem-solve (e. 
g., checking for common syntactic errors) or lack the knowledge to 
interpret error messages and thus be more susceptible to frustration. 

The traditional tell-and-practice format could be thought of as a 
pedagogy that gives students practice in writing code before practice in 
reading code. For example, when students learn about a new function, 
they may focus on reproducing it in practice activities instead of first 
understanding the code, learning what each part of the code might do, 
and relating the code to the expected output. While the tasks used in the 
traditional tell-and-practice approach involve writing code, we could 
imagine other approaches might focus on analyzing and comprehending 
code before writing it. There may be advantages, especially in the early 

stages of learning programming, to using different tasks with different 
affordances, which primarily focus on understanding code. 

1.2. Possible cognitive benefits of predicting 

Although instructors may value students learning to understand 
code, they may be unsure how to help students practice such under-
standing. One task that engages students in reading and analyzing code 
before writing it is prediction. In prediction tasks, students read code 
and then predict what will happen when the code is run. The code 
students are asked to read and predict could direct their attention to 
specific features of the code. 

This approach aligns with prior studies that have highlighted the 
benefits of the Predict-Observe-Explain (POE) pedagogy (coined by 
White & Gunston, 1992). Specifically, the POE pedagogy contains three 
stages: predict what the code will do, observe what happens when the 
code is run, and then explain how the code works. To our knowledge, 
prediction tasks have mostly been studied outside of programming in-
struction, in domains as varied as reading comprehension, science, and 
mathematics (Brod, 2021). Prediction tasks generally ask students to 
make a hypothesis as to the outcome of a process based on their 
pre-existing knowledge, observe the outcome, and then compare the 
outcome with their prediction (Brod, 2021). For example, White and 
Gunstone (1992) used a predict-observe-explain pedagogy to promote 
conceptual understanding in chemistry. First, students would predict the 
outcome of a physical experiment, then observe the outcome of the 
experiment and, finally, reconcile any differences between their pre-
diction and the observed outcome. Also, Miller et al. (2013) documented 
the benefits of incorporating prediction as a regular teaching routine for 
large STEM classes. Their results revealed that when students make a 
prediction before a scientific demonstration, they learn more, regardless 
of the correctness of their prediction. 

Adapting the prediction pedagogy to the domain of programming 
could potentially address some of the challenges encountered in tradi-
tional tell-and-practice instruction. For example, in tell-and-practice, 
one risk is that students end up focusing on surface features rather 
than conceptual or functional understanding. However, with predicting, 
instructors could design effective prediction tasks that help students 
prioritize understanding and comprehension, direct attention to mean-
ingful features, and encourage semantic processing (Brod, 2021). Pre-
dicting or comprehending code has been found to be a precursor skill to 
code writing (Lopez et al., 2008; Venables et al., 2009) and pedagogy 
that included code comprehension questions more effectively supports 
learning from worked examples (Clancy & Linn, 1999). In Xie et al.’s 
(2019) theory of instruction for introductory programming, they 
emphasized the importance of teaching programming skills in an 
appropriate order. They suggested that students should learn tracing 
before writing correct syntax, and they should learn code comprehen-
sion before applying code templates. In an exploratory study, they found 
that instruction that sequenced skills in this way deepened under-
standing and decreased errors in writing code on a posttest. 

Emphasizing reading and comprehension of code might be of special 
importance for novices because they lack prior experience and expertise 
in identifying the important features that need the most attention. They 
may mistakenly perceive punctuation and syntax, superficial features 
that can easily trip up novices, to be the most challenging part of pro-
gramming rather than conceptual understanding. For example, asking 
students to predict whether simple code such as ’num < - "eleven"’ will 
result in printing num, "eleven", 11, or no output being printed at all may 
direct students’ attention toward the function of the assignment oper-
ator (<-). In contrast, if students were asked to write code to save 
"eleven" into the object ’num’, they would have to get many details 
correct in order for the code to run (e.g., write num in lower case, put 
quotation marks around the text "eleven", make sure the assignment 
operator is in the correct direction). Because this is a very simple 
example, the tell-and-practice pedagogy would result in many students 
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writing this code correctly. However, they may not notice the special 
relationship between the assignment operator and the object (num) and 
the contents ("eleven") in the same way that students who practice 
predicting might notice. 

Prediction may also help students make more effective use of their 
limited cognitive resources during learning (also called cognitive load, 
Sweller, 2010a, 2010b). Especially because a novice can easily be 
overwhelmed by new information, prediction tasks may be a way to 
focus their attention on critical information without introducing extra-
neous task demands nor making the task too easy (e.g. Sweller & Cooper, 
1985). In order to make a prediction, students do not have to memorize 
correct programming syntax which may produce extraneous load; but 
they do have to search for features of the code that would cause a 
particular outcome, a demand that is germane to the learning task at 
hand. Although the cognitive load may not be lessened, a novice’s 
limited bandwidth can be deployed more efficiently, focused on critical 
features. 

In addition to cognitive load, other cognitive mechanisms point to 
the possible benefits of prediction. Asking students to predict an 
outcome before they learn about it may draw upon the same cognitive 
mechanisms as the testing effect, a learning benefit seen when students 
attempt to answer questions about a topic before explicit instruction. 
Prior studies have found that asking students questions before giving 
explicit instruction leads to more engagement, more connections be-
tween prior knowledge and new information, and ultimately better 
learning (Pan & Carpenter, 2023; Little & Bjork, 2011; Little & Bjork, 
2016). Similar to pretesting, asking students to make predictions may 
also hold potential to produce these benefits. In both pretesting and 
making predictions, students retrieve prior knowledge but also attempt 
to figure out novel aspects of the situation at hand. 

Given the potential cognitive benefits to prediction, we want to go 
beyond proposing prediction as an alternative pedagogy: we want to 
experimentally compare it with a traditional tell-and-practice approach. 
The results, although specific to coding and modest in scope, may yield 
theoretical implications. Although there is a rich tradition in educational 
theory on how to sequence learning experiences (e.g., what should come 
first) going back to Bruner (1966) and many domain-specific theories in 
computer science education proposing what early programming in-
struction should look like (e.g., Xie et al., 2019 draws upon and also 
reviews many of them), specific experiments should also be conducted. 

1.3. Possible non-cognitive benefits of predicting 

Given the emotional states that occur during learning, we should also 
consider the possible non-cognitive effects of prediction pedagogy: 
students may create a different definition of "success in learning," give 
students ways of resolving cognitive disequilibrium, and remove pre-
mature threats to self-efficacy. 

With a prediction task, students’ definition of success may lean away 
from just whether or not the code runs and towards understanding why 
the code does what it does. If code does not run as expected (a common 
occurrence during learning), a student with a focus on understanding 
rather than "getting the code to run" might interpret that as an oppor-
tunity to learn and grow rather than as a sign of failure. For example, 
incorrectly predicting that the example code ’num < - "eleven"’ would 
result in num being printed and seeing that nothing gets printed could 
make students more curious about what exactly is going on in this code. 
Over time, predicting might help students perceive computer pro-
gramming as a continuous process of incremental learning and revising, 
thus developing more of a growth mindset (Dweck, 1999; Mueller & 
Dweck, 1998). 

Prediction is also a way to practice the kind of code tracing that 
expert programmers engage in during debugging; thus teaching students 
a strategy for alleviating cognitive disequilibrium and resolving future 
issues. Seeing code outputs that are different from their own predictions 
may also evoke a different sort of disequilibrium than finding out that 

their code did not run. Incorrect predictions have the potential to pro-
duce more positive emotions such as surprise and curiosity, which can 
produce engagement and benefit learning (Brod et al., 2018; Miller 
et al., 2013; Theobald & Brod, 2021). Finally, making an incorrect 
prediction may not be as threatening to self-efficacy as writing buggy 
code. Instead of thinking of themselves as failures as coders, they might 
consider this a failure to understand. Making incorrect predictions also 
makes students aware of what they do and do not know. This differential 
may foster curiosity when they receive direct instruction or read 
explanations. 

1.4. The current study 

The current study explores predicting as a strategy for teaching 
programming. In a random-assignment experiment, we compare novice 
students working on prediction tasks to those working in the more 
traditional tell-and-practice context, and investigate both the cognitive 
and non-cognitive effects of the two approaches. 

Undergraduate students with no prior experience in coding were 
randomly assigned to one of two conditions – 1) the Predict condition in 
which participants were given instruction and then asked to make and 
test predictions about pre-populated code, or 2) the Traditional in-
struction condition in which participants were given instruction and 
then asked to write or manipulate code on their own. Both conditions 
received the same explanatory text and instructional content. The only 
difference between the conditions was the task they were asked to 
perform: in one condition, students were asked to make predictions and 
run pre-provided code (Predict condition); in the other condition to 
write or manipulate and then run code on their own (Traditional 
condition). 

We hypothesized that students assigned to the Predict condition 
would show increased learning and more positive outcomes on non- 
cognitive measures than students assigned to the Traditional condi-
tion. For cognitive measures, we expected that students in the Predict 
condition would have higher accuracy in the post-test as well as more 
correct solutions when multiple answers are allowed. For non-cognitive 
measures, we hypothesized that students in the Predict condition would 
report having a better learning experience, including more positive 
emotions in learning, more positive responses to error messages, less 
perceived difficulty in making sense of the instructional materials, and 
less perceived cost of learning. 

2. Method 

2.1. Participants 

Participants were recruited from the online Psychology subject pool, 
SONA, at the University of California, Los Angeles (UCLA). Participants 
earned course credit for completing the study. To avoid biasing partic-
ipants’ responses and to ensure recruitment of participants who may not 
be interested in computer programming, participants were informed 
that the goal of the research study was to test a new online learning 
module, but not explicitly told that the task would involve program-
ming. Students who were over 18 years old and not majoring in Com-
puter Science or any other computational field were eligible to 
participate. To confirm their eligibility, students were asked to confirm 
this statement, “Yes, I am at least 18 years old and have never taken 
computer programming classes.” 

In total, 166 participants signed up for the study. Participants who 
did not complete the experiment (n = 21), who completed the experi-
ment in more than one sitting (n = 17), or who took less than 10 min to 
complete the experiment (n = 7) were excluded. The resulting analytic 
sample comprised 121 students. Before starting the study, participants 
were randomly assigned by the Qualtrics (Provo, UT) software to either 
the Predict condition (n = 60) or the Traditional condition (n = 61). Of 
the final sample of 121 participants, all participants completed every 
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activity and answered every question. Seventy-six percent of the sample 
were female; one participant self-identified as non-binary, and the rest 
as male. The mean age was 20.35 years, SD = 2.56. Thirty-five percent 
described themselves as Asian, 23% as White, 17% Latino, 7% Middle 
Eastern/North African, 4% Black, 13% as more than one race, and one 
participant as Uzbek. 

Chi-square analyses revealed no significant associations between 
condition and gender (2(2) = 4.56, p = .1) or condition and race/ 
ethnicity (2(2) = 6.38, p = .382). Also, one way ANOVA showed that 
students’ age (F(1,118) = 2.06, p = .20) and GPA (F(1,118) = 1.91, p =
.20) did not significantly differ by condition. 

2.2. Learning materials 

The learning materials were divided into 4 modules and included a 
total of 17 brief activities. The modules were designed to mimic a self- 
paced introductory programming course for students with no coding 
experience (see Table 1 for a brief summary of the four modules and 
https://tinyurl.com/TraditionalCondition and https://tinyurl.com/ 
PredictionCondition for the full materials). The modules interleaved 
explanations, worked examples, and questions (multiple-choice and 
written response), as well as interactive code blocks. Each module was 
designed to be completed in 10–15 min. 

2.3. Procedure 

Upon signing up for the study, participants were sent a link by email 
to access the experiment. On clicking the link they were randomly 
assigned to either the Predict or Traditional instructional conditions. All 
participants began by reading an overview of the experiment, confirm-
ing their eligibility, and filling out a pre-survey. (See below for a com-
plete description of measures.) 

Next, participants worked their way through the series of four 
instructional modules. Participants assigned to the Predict condition 
were first provided some introductory information, shown some R code, 
and asked to make a prediction about what the code would do by 
selecting from one of five multiple-choice options (i.e., “When we click 
Run, which output do you think we will see?”). After making each 
prediction, students advanced to the next page, where they were 
reminded of their prediction and prompted to run the pre-provided code 
in order to see what happened. After students ran the code, they then 
reported what the output actually was. On the next page, students were 
provided text that explained the R code and why it worked the way it 
did. 

Participants assigned to the Traditional condition were provided 
introductory information and some example code. They were asked to 
modify the code that was provided in order to produce a specified 
output, click “Run”, and then report the output they actually saw (i.e. 
“Which output did you see?”). The multiple choice options were the 
same as those in the Predict condition. On the next page, students were 
provided an explanation of the correct R code and why it worked. Ex-
amples of how an activity appeared in the Predict and Traditional 
conditions are provided in Fig. 1. 

After each of the four modules (each focused on a different concept 
or R function), students in both the Traditional and Predict conditions 
were asked a question that required them to generate a rule or sum-
marize the topic of the module. 

At the end of each module, participants in both conditions rated their 
emotions while completing the learning activities (R sentiment), and 
answered the generate-rule question at the end of the module. After all 
four modules were completed, participants completed a learning 
assessment and a flexibility assessment, followed by a post-survey that 
included questions about their age, gender, race/ethnicity, and GPA. 
Details regarding the learning assessment and post-survey measures will 
be discussed in the measures section below. See Fig. 2 for an illustration 
of the study procedure as well as a timeline of when various measures 
were administered. 

The overall duration of the experiment was similar across conditions. 
The students in the Predict condition took a little longer overall (M =
59.34 min, SD = 24.87) than those in the Traditional condition (M =
51.23 min, SD = 22.13), though the difference was not statistically 
significant (p = .6). Students in the predict condition wrote slightly 
longer summaries of what they had learned at the end of each module 
(M = 74.88, SD = 43.47) than did those in the Traditional condition (M 
= 61.42, SD = 30.98), but again this difference was not statistically 
significant (p = .6). 

2.4. Measures 

A variety of measures were collected, both cognitive and non- 
cognitive. 

2.4.1. Cognitive outcomes 
Learning assessment. After the four learning modules and before 

the post-survey, participants completed a sixteen-item learning assess-
ment (α = .83) that covered concepts related to each of the four learning 
modules (Appendix A). The first fifteen items were used as a measure of 
learning. The last item was used as the flexibility assessment (see next 
section). The learning assessment contained five different question 
types: 1) error identification questions, in which participants identified 

Table 1 
Activities included in each of the 4 online modules.  

Module Topics covered Example activities Generate rule/ 
Summarize 
Question 

Print() [5 
activites] 
[very easy] 

basics of the print() 
functions in R 
the differences 
between data types, 
such as numbers and 
characters, by using 
quotation marks 

print (“Hello 
World”) 
print (Hello world) 
print (1) 
str (“Good 
Morning”) 
str (20) 

Come up with a 
rule for when you 
need to use 
quotation marks 
and when you do 
not. 

Arithmetic 
Operator [3 
activites] 
[easy] 

the differences 
between numbers 
and strings of 
characters 
uses the + operator to 
show students that R 
can be used as a 
calculator. 

“7 + 7” 
7 + 7 
“7” + 7 

Create a rule that 
would help you 
predict when the 
operator (like + ) 
will produce a 
sum and when it 
will produce an 
error. 

Objects [5 
activites] 
[medium] 

reinforce the 
aforementioned 
concepts 
the function of the <- 
operator in saving a 
single value and the 
result of a calculation 
capital lower case 
matter in R coding. 

num < - 5 
num 
name < - “Eleven” 
NUM < - 5 num < - 
10 
Num 
count < - 0 
count < - count +1 

Describe what 
the <- operator 
does. 

Vectors [6 
activites] 
[hard] 

using < - operator to 
save multiple values 
calculating using 
vectors 
viewing a particular 
value in the vector 
Boolean comparison 
saving the result of 
Boolean comparisons 
using < - operator. 

my.vector < - c 
(1,2,3,4,5) 
my.vector 
my.vector < - c 
(1,2,3,4,5) 
my.vector *100 
days < - c 
(“Sunday”, 
“Monday”, 
Tuesday”, 
“Wednesday”, 
“Thursday”, 
“Friday”) 
days [5] = =

“Friday” 
scores < - c (103, 
200, 305, 180) 
high_score <- 
scores >200 
high_score [1] 

Come up with a 
rule for what you 
need to do to 
store a list of 
values in a 
vector.  
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which lines of code (if any) from a sample contained an error (questions 
1–1, 2–1, 3–1, 4–1, and 5–1); 2) code writing questions, in which partic-
ipants were asked to generate code to produce a specified output 
(questions 7, 8, and 11) or rewrite a line(s) of code to run without error 
(questions 2-2, 3–2, and 4–2); 3) code comprehension questions, in which 
participants explained in their own word what a line of code does 
(questions 1-1, 2–3, and 4) or what output it will produce (question 12); 
error interpretation activities, in which participants were provided a line 
of incorrect code and asked to explain why it was wrong (question 10); 
and 5) code identification tasks, in which participants were asked to 
select, from a list, the correct piece of code to perform a given task 
(question 9). 

The learning assessment was graded according to a rubric. For error 
identification questions, participants were awarded one point for each 
correct error identified. For code rewriting questions, participants were 
awarded one point for each error corrected. For code comprehension 
and error interpretation questions, participants were awarded one point 
if the explanation included all elements of the model response, half a 
point if the explanation included some but not all elements of the model 
response, and no points if the response contained none of the elements 
included in the model response. For code identification tasks, partici-
pants were awarded one point for identifying the correct code in the list 
and no points for selecting the other incorrect options. Thirteen of the 
questions were each worth one point each and two of the questions were 
worth two points each, yielding a total correct score between 0 and 17, 
with higher scores indicating greater learning. 

Flexibility assessment. The last question on the learning assess-
ment was a novel R coding task: 

How many ways can you use R to find the sum of 100 and 200? Write 
all the code you can think of in the space below. Label each solution 
with a number (i.e. 1 for solution number #1) 

We used the number of unique correct solutions generated by each 
participant as a measure of flexibility (Guilford, 1967; Kwon et al., 
2006). 

2.4.2. Non-cognitive measures 
R sentiment (measured at six time points). R sentiment (i.e., 

“How do you feel about R right now?”) was measured at six time points 
throughout the study: t1 (on the pre-survey), t2 through t5 (after each of 
the 4 learning modules), and t6 (on the post-survey). Participants used a 
slider to rate their emotion (Munezero et al., 2014) on a continuous scale 

from − 100 (Extremely negative) to +100 (Extremely positive) (α = .95). 
Response to error (post-survey). Participants were shown a 

screenshot of some incorrect R code and the associated error message. 
They were asked “Imagine you are the student in the example above. 
How do you think you would feel in this situation?” They rated how they 
would feel, using a slider, on a scale from − 100 (Extremely negative) to 
+100 (Extremely positive). 

Cognitive Load Component Survey (post-survey). Nine items 
adapted from the Cognitive Load Component Survey (Morrison et al., 
2014) were included in the post-survey to measure participants’ per-
ceptions of the activity they just completed. Each item was rated on a 
scale of 0–10. The 9 items were grouped into three subscales (of two to 
four items each) and averaged to measure perceived.  

• Intrinsic cognitive load (2 items, α = .89):  
o “The topics covered in the activity were very complex.”  
o “The activity covered code that I perceived as very complex.”  

• Extraneous cognitive load (3 items, α = .94):  
o “The instructions and/or explanations during the activity were 

very unclear.”  
o “The instructions and/or explanations were, in terms of learning, 

very ineffective.”  
o “The instructions and/or explanations were full of unclear 

language.”  
• Germane cognitive load (4 items, α = .97):  

o “The activity really enhanced my knowledge and understanding of 
computing/programming.”  

o “The activity really enhanced my understanding of the topic(s) 
covered.”  

o “The activity really enhanced my understanding of the program 
code covered.”  

o “The activity really enhanced my understanding of the concepts 
and definitions.” 

Perceived cost (pre- and post-survey). Both on the pre-survey and 
on the post-survey, students were asked on four items to evaluate how 
costly it would be for them to learn how to program. They were asked to 
rate their agreement, from “Strongly disagree” to “Strongly agree”, with 
the following four statements on a six-point scale.  

• “I think I would have to give up too much to learn programming.”  
• “For some reason, computer programming seems like it will be 

particularly hard for me.” 

Fig. 1. Comparison of an instructional task in the traditional condition and the predict condition.  
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Fig. 2. Experimental procedure and measures.  
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• “I think learning computer programming would be too stressful for 
me.”  

• “I think learning computer programming would take up too much of 
my time.” 

Ratings were averaged across the four statements to get an overall 
indicator of perceived cost. 

In addition to these non-cognitive measures, additional measures 
were collected as part of a larger study (for more information, see 
[Tucker, 2007]). 

3. Results 

For all of the following analyses, we used R version 3.6.2 (R Core 
Team, 2019). 

3.1. Effect of condition on cognitive outcomes 

To examine whether there was an effect of condition on cognitive 
outcomes (the learning and flexibility assessments), we conducted 
separate t-tests (shown in Table 2 along with descriptive statistics). On 
average, participants in the Predict condition scored significantly higher 
on the learning assessment and generated more unique solutions on the 
flexibility assessment than those in the Traditional condition (shown in 
Figs. 3 and 4). 

3.2. Effect of condition on non-cognitive outcomes 

3.2.1. R sentiment 
As a reminder, students expressed their sentiment towards R by 

moving a slider on a continuous scale from − 100 (extremely negative) to 
+100 (extremely positive) at six timepoints. As shown in Table 3, stu-
dents in the two conditions did not differ significantly at the start of the 
study (t1) or after the first module (t2). However, students in the Predict 
condition demonstrated significantly more positive sentiment than the 
Traditional condition after the second, third, and fourth modules (t3, t4, 
t5) and on the post-survey (t6). 

We used Growth curve analysis (Mirman, 2014) to analyze change in 
sentiment over the course of the six timepoints as shown in Fig. 5. The 
overall learning curves were modeled with third-order (cubic) orthog-
onal polynomials and fixed effects of Condition (Traditional vs. Predict) 
on all time terms. The Traditional condition was treated as the baseline 
and parameters were estimated for the Predict condition. The model also 
included random effects of participants on all time terms. The fixed ef-
fects of condition were added individually and their effects on model fit 
were evaluated using model comparisons. Improvements in model fit 
were evaluated using − 2 times the change in log-likelihood, which is 
distributed as X2 with degrees of freedom equal to the number of pa-
rameters added. Parameter estimates, degrees of freedom, and corre-
sponding p-values were estimated using Satterthwaite’s method. This 
analysis was carried out in R using the lme4 package. 

Participants in the Predict and Traditional conditions did not 
significantly differ in sentiment towards R prior to beginning the activity 
(X2(1) = 3.42, p = .064). However, students in the Predict condition 
increased their sentiment at higher rates than students in the Traditional 
condition (X2(1) = 9.50, p = .002). There was also a significant effect of 
Condition on the quadratic term (X2(1) = 4.58, p = .03) as well as a 
significant effect of Condition on the cubic term (X2(6) = 214.10, p <

.0001). 
Perhaps because the first module was easier, students in both con-

ditions reported a rise in R sentiment after completing the first module. 
As the modules became more challenging, however, the Traditional 
group’s R sentiment dropped, on average, while that of the Predict 
condition remained positive. 

3.2.2. Effect of condition on response to hypothetical error 
The two conditions differed significantly in how they would feel in a 

hypothetical situation in which they are shown negative feedback on a 
programming task (Fig. 6). Participants in the Predict condition rated 
their emotion, on average, more positively than participants in the 
Traditional condition (b1 = 28.77, F(1, 119) = 10.30, p = .002, 95% CI 
[11.02, 46.52], Adjusted R^2 = 0.07248). 

Table 2 
Descriptive statistics, confidence intervals of mean differences, and T-tests comparing post-survey measures of learning between the predict and traditional 
instructional conditions.   

Predict M (SD) Traditional M (SD) b1 [95% CI] t(df) Cohen’s d p 

Learning assessment (max = 16) 9.90 (3.72) 8.52 (3.90) 1.38 [0.00, 2.75] 1.99(118.91) 0.36 .05 
Flexibility assessment (number of unique correct solutions) 2.18 (1.48) 1.57 (1.09) 2.183 [0.14, 1.08] 2.58(10Con8.32) 0.47 .01  

Fig. 3. Distribution of Learning Assessment Scores Broken Down By Condition 
Note. Points represent the individual participants’ scores. The horizontal line 
represents the median. The red dot represents the mean. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 4. Distribution of Flexibility Scores Broken Down By Condition 
Note. Points represent the individual participants’ scores. The horizontal line 
represents the median. The red dot represents the mean. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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3.2.3. The effect of condition on perceived cognitive load 
To test the effect of condition on students’ perceived cognitive load, 

we conducted separate t-tests for each measure: intrinsic load, extra-
neous load, and germane load (descriptive and t-test statistics are 
available in Table 4). Although there was no significant difference be-
tween conditions in perceived intrinsic load (p = .37), students in the 
Predict condition perceived the extraneous load to be lower (p = .005) 
and the germane load to be higher (p = .05) than did those in the 
Traditional condition. 

3.2.3.1. The effect of condition on cost. In the pre-survey, participants’ 
perceptions of cost did not differ across conditions (Predict condition: M 
= 3.54, SD = 0.99, Traditional condition: M = 3.75, SD = 1.1), t(118.2) 
= 1.13, p > .05, Cohen’s d = .21. 

On the post-survey, however, there was a significant effect of con-
dition on cost when controlling for pre-survey cost ratings (b1 = 0.40, F 
(2, 118) = 6.33, p = .013, 95% CI[0.06, 0.72], eta squared = 0.93). 
Participants in the Predict condition perceived learning programming to 

be less costly than participants in the Traditional condition. Pre-survey 
perceived cost was also a significant covariate (b1 = 0.82, F(1, 118) =
122.10, p < .001, 95% CI[0.66, 0.97], eta squared = 0.05), see Fig. 7. 

3.3. Intercorrelations among measures 

Finally, we examined the intercorrelations among all of the mea-
sures, both overall (Table 5) and separately within each condition 
(Appendix B). In general, the pattern of correlations is well aligned with 
expectations of cognitive load theory. Perceived extraneous cognitive 
load correlated negatively with perceived germane cognitive load, 
which makes sense. Intrinsic load correlated negatively with post-test 
scores, which we interpret to mean that participants who perceived 
the tasks as more complex also struggled more in their learning. 

We also note that attitudes toward learning R correlated positively 
with students’ response to the hypothetical error scenario, and that both 
of these measures were negatively related to perceived cost as reported 
on the post-survey. Together, these patterns support the internal con-
sistency and validity of the measures within the context of our study. 

3.4. Error analysis 

We present an informal analysis of errors for further examination and 
reference in Appendix C. 

4. Discussion 

Learning programming is a long and challenging process for novice 
students, lending importance to research on interventions with the po-
tential to enhance this process. The present study illustrates the impact 
of a simple pedagogical adjustment: having students predict outcomes 
before viewing the output and explanations. Results indicate that this 
approach leads to significant improvements in both cognitive and non- 
cognitive outcomes, compared to traditional code writing tasks. This 
study extends previous research on the effects of various programming 
tasks on instruction and demonstrates the potential of prediction as an 
effective strategy for teaching programming. 

These findings align with prior studies that have highlighted the 
benefits of the Predict-Observe-Explain (POE) pedagogy (coined by 
White & Gunston, 1992) in subject areas such as biology and physics. 

Table 3 
Descriptive statistics and T-Tests comparing sentiment ratings between the 
predict and traditional instructional conditions at each of the six time points.  

Time Predict 
M (SD) 

Traditional 
M (SD) 

b1 [95% 
CI] 

t(df) Cohen’s 
d 

p 

1 7.65 
(49.78) 

− 0.26 
(50.97) 

7.91 
[-10.22, 
26.05] 

− 0.86 
(118.99) 

.16 .4 

2 46.75 
(43.60) 

30.93 
(51.53) 

15.82 
[-1.38, 
33.01] 

− 1.82 
(116.41) 

.33 .07 

3 48.88 
(40.70) 

31.66 
(50.25) 

17.23 
[0.75, 
33.70] 

− 2.07 
(114.79) 

.38 .04 

4 53.96 
(43.55) 

15.13 
(56.55) 

38.84 
[20.64, 
57.02] 

− 4.24 
(112.56) 

.77 <.0001 

5 46.91 
(46.57) 

6.54 
(60.81) 

40.38 
[20.86, 
59.90] 

− 4.10 
(112.29) 

.74 <.0001 

6 53.60 
(46.11) 

25.75 
(59.50) 

27.85 
[8.66, 
47.03] 

− 2.88 
(112.86) 

.53 .005  

Fig. 5. Mean R Sentiment Across the Six Time Points by Condition 
Note. * Indicates a significant mean difference between the two groups (p < .05). Triangles and dots indicate group means; vertical lines, standard errors. Dotted and 
solid lines represent predictions of the growth curve model. 
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Our brief coding modules each include activities that map onto the three 
stages of this approach: predict what the code will do, observe what 
happens when code is run, and then explain how the code works. 

4.1. Cognitive outcomes 

The results of this study indicate that students who were asked to 
generate predictions before viewing the output and explanations scored 
higher on the learning assessment than students who wrote code without 
making predictions. Additionally, despite having less code-writing 

practice, students in the Predict condition wrote more coding solu-
tions than those in the Traditional condition on the flexibility assess-
ment. Our study replicated prior research where the utilization of the 
POE approach in various educational contexts has been found to 
enhance students’ comprehension and conceptual flexibility (Güngör & 
Özkan, 2016, December; Hong et al., 2021). 

One possible explanation for the effectiveness of predicting in our 
modules is that it may have led to deeper semantic processing (Craik & 
Lockhart, 1972) of the code elements and syntax. Prior studies have 
found that directing novices’ attention to key features could improve 
learning (Nadiah et al., 2021; Schnotz & Kürschner, 2007; Son et al., 
2008). By requiring students to register their predictions before running 
the code, they may have paid more attention to key features, such as the 
purposes of different functions, that would lead to certain output. They 
may have come up with hypotheses about which of the features of the 
code would be causally related to potential outputs. 

Another potential mechanism may be that this pedagogy helps stu-
dents make more connections between concepts. The observed effects 
are consistent with prior research, indicating that the POE approach 
helps students to actively engage in the learning process by connecting 
prior knowledge with newly acquired information, leading to improved 
academic outcomes (Kırılmazkaya & Zengin-Kırbağ, 2015). Also, 
encouraging students to consider different possible outcomes and 
compare their predictions to the actual outcomes may have led students 
to find relations between concepts (Schwartz & Bransford, 1998; 
Schwartz et al., 2011). This interconnected understanding may have led 
to greater cognitive flexibility evidenced by the greater number of 
unique solutions. 

4.2. Non-cognitive outcomes 

The students in the Predict condition also had more positive 

Fig. 6. Distribution of Emotion Ratings in Response to a Hypothetical Error 
Broken Down By Condition 
Note. Points represent individual participants’ scores. Horizontal lines represent 
the group medians, red dots, the means. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 4 
Descriptive statistics and T-Tests comparing the predict and traditional conditions on cognitive load measures.   

Predict 
M(SD) 

Traditional 
M(SD) 

b1 [95% CI] t(df) Cohen’s d p 

Intrinsic load 4.11(2.14) 4.45(2.03) − 0.34[-1.09,0.41] 0.90 (118.37) .16 .37 
Extraneous load 2.38(2.04) 3.45(2.10) − 1.07[-1.81,-0.32] 2.83 (118.98) .52 .005 
Germane load 7.23(1.95) 6.44(2.44) 0.79[-0.01,1.59] − 1.97 (114.17) .36 .05  

Fig. 7. Distribution of Cost Ratings on the Pre-Survey and Post-Survey Broken Down By Condition 
Note. Points represent individual participants’ scores. Horizontal lines represent group medians. The red dot represents the mean. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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emotional responses to R and to error messages. Though the two groups 
did not differ in their sentiment expressed at the start of the activity, 
students in the Predict condition demonstrated more positive sentiment 
than students in the Traditional condition as the lesson progressed. 
Importantly, the differences between the two groups first emerged as the 
task difficulty increased, suggesting that the POE pedagogy may help 
buffer against negative emotions associated with challenges or setbacks. 
This hypothesis is further supported by the finding that students 
assigned to the Predict condition exhibited more positive responses 
when shown a hypothetical programming error on the post-survey. 
These observed trends are in line with previous studies that found a 
link between use of the POE strategy and positive attitudes towards 
learning (Bilen & Aydoğdu, 2010; Köse et al., 2003; Liew, 1995). 

These findings suggest that the prediction activities may prepare 
students more effectively for the cycles of trial and error inherent in 
coding. This may be critical because students’ conceptions of pro-
gramming can influence their motivation and learning strategies. For 
instance, in a sample of 421 Taiwanese students majoring in computer 
science, Liang et al. (2015) found that students who conceived of pro-
gramming as “memorization” and “rote learning” showed more 
surface-level motivation and approaches to learning. It may be more 
adaptive for students to conceptualize coding as cycles of 
prediction-observation-explanation, iteratively updating their knowl-
edge and code. 

Students assigned to the Predict condition rated their perceived 
extraneous cognitive load to be lower and the germane load to be higher 
than students assigned to the Traditional condition. They also consid-
ered the learning activity to be less costly than students assigned to 
produce their own code, even though the amount of time and effort (as 
measured by word count and time spent) did not meaningfully differ 
across the two conditions. The prediction tasks may have directed stu-
dents’ attention to selected features of the code making the learning 
experience feel more manageable and less costly, thus leading to more 
positive sentiment towards R. In general, pedagogies that avoid over-
whelming students with multiple simultaneous tasks may lead to more 
positive attitudes towards the subject (Brod, 2018; Craik & Lockhart, 
1972; Prat-Sala & Redford, 2010). Even though the code writing exer-
cises in the Traditional condition were fairly simple (students only had 
to write one or two lines of code), some aspects of writing and submit-
ting code must have felt more cognitively burdensome than making 
predictions. This load and cost may have increased negative emotions 
towards R (such as frustration) during learning. 

Existing research has also found the POE pedagogy to result in a 
range of favorable non-cognitive outcomes beyond our specific focus. 
For example, studies have reported increased interest in academic sub-
jects as an outcome of POE implementation (Bilen & Aydoğdu, 2010; 
Köse et al., 2003; Liew, 1995). Additionally, the application of POE 
pedagogy has been associated with heightened self-confidence among 
learners (Bilen, 2009; Kırılmazkaya & Zengin-Kırbağ, 2015) and the 
cultivation of a growth mindset specifically directed toward learning 
within the relevant domain (Güngör & Özkan, 2016, December). These 
findings underscore the broader positive impacts of POE pedagogy on 

various non-cognitive aspects of students’ educational experiences. 

4.3. Interaction between cognitive and non-cognitive outcomes 

Although we have considered cognitive and non-cognitive outcomes 
separately, the processes leading to each are intimately intertwined 
during learning. It is not clear whether non-cognitive (i.e., emotional 
and motivational) factors affect learning, or if learning affects non- 
cognitive experiences. It is also possible that both are true. 

On one hand, more positive non-cognitive experiences may lead to 
better cognitive outcomes. For example, generating predictions could 
elicit responses such as curiosity and interest that can facilitate knowl-
edge acquisition and creativity (Isen, 2000). Prior research has shown 
that emotions like curiosity can lead to greater exploration and 
engagement (Kosuliev & Stanev, 2020), which could lead to deeper and 
more connected understanding. Positive emotions during learning can 
also orient students’ attention to feedback (Boekaerts, 2010, pp. 91–111; 
Gervey et al., 2005). For example, making a prediction might have made 
students feel more invested in the output of the R code. 

Psychological cost – students’ perceptions of how costly an activity is 
in terms of the time it takes, how stressful it is, and how much it takes 
away from participation in other valued activities) (Barron & Hulleman, 
2015) – can also impact engagement and future investment in learning. 
If students experience learning to program as costly, they may take 
maladaptive approaches to learning (e.g., getting it over with) and 
decide not to invest in further learning (e.g., learning on their own, 
taking more courses, pursuing related majors). Thus, having a more 
positive emotional and motivational experience of programming in-
struction might lead students to learn more about programming. 

On the other hand, more effective cognitive experiences (that is, 
better learning) might create better non-cognitive experiences. Implicit 
in each learning task is a cognitive goal. In the Traditional condition, the 
goal is to write code that accomplishes some task. Novices engaged in 
this task might assume that "learning to code" is learning to write 
flawless code that works on the first try. They might misinterpret code 
not running as a sign of failure or evidence that they are not good at 
programming. When students possess a rigid perspective that learning to 
code should yield immediate results without uncertainty or a need for 
iterative evaluation (Lee et al., 2023), the inability to produce flawless 
code may be more discouraging than it should be. In contrast, making 
incorrect predictions on the prediction task might help novices develop 
more adaptive epistemic beliefs about what it means to learn to code. 
Although students’ epistemic beliefs about computer programming can 
predict their self-efficacy in coding (e.g., Lee et al., 2023), future 
research should be done to determine whether changing these beliefs 
does indeed impact learning and interest. 

Another way that the cognitive outcomes impact non-cognitive ones 
is that repeated experiences of failure to write code correctly can lead to 
a chain of negative emotions such as frustration, disengagement, and 
boredom (D’Mello & Graesser, 2011). These emotions can set off "vi-
cious cycles" that depress learning, which further heightens negative 
emotions (D’Mello & Graesser, 2011, p. 15). 

Table 5 
Overall correlation matrix.  

Variable 1 2 3 4 5 6 7 8 

1. Post-test score –        
2. Flexibility .66*** –       
3. R Sentiment avg .51*** .43*** –      
4. Response to error .21* .20* .32*** –     
5. Intrinsic Load − .50*** − .46*** − .21* − .19* –    
6. Extraeneous Load − .43*** − .35*** − .46*** − .29*** .45*** –   
7. Germane Load .47*** .37*** .56*** .38*** − .17 − .38*** –  
8. Pre-test cost − .15 − .25* − .27 − .03 .43*** .26* − .10 – 
9. Post-test cost − .23* − .29 − .44*** − .08 .30*** .36*** − .22* .70*** 

*<0.05, **<0.01, ***<0.001. 
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4.4. Limitations and future directions 

This study provides initial evidence of the potential of using pre-
dictions as a strategy to improve learning among students in the early 
stages of learning programming. However, there are a number of limi-
tations that should be considered when interpreting these results. 

4.4.1. Participants and study context 
Participants were recruited from the Psychology department at a 

competitive public university, and thus may not be representative of the 
broader population of novice programming students. We only investi-
gated the effect of predicting versus traditional instruction using the R 
programming language. Prior research indicates that some program-
ming languages may be easier to learn than others. Because we only 
looked at one programming language, it’s not clear whether or not 
predicting might similarly benefit learners in the early stages of learning 
another, more complex language. 

Another limitation is that the design of this study did not include a 
pretest, which limits our ability to capture participants’ prior pro-
gramming knowledge at baseline. We made this decision because we 
feared that taking a pre-test might impact students’ psychological state 
as they engaged in the learning sessions and thus alter the effect of our 
experimental manipulation (Opfer & Thompson, 2008). While the study 
asked participants to self-identify as novice learners of R programming 
who have not taken any programming courses, it is possible that they 
might have possessed some other prior experience or knowledge (e.g., 
mathematical prowess, having taken a logic course), which could have 
influenced their performance on the posttest. 

Although this study provides initial evidence that predicting may 
influence learning in a controlled experimental setting with self- 
proclaimed beginners, it does not provide information on whether 
these findings extend to naturalistic learning contexts. We focused pri-
marily on very early stages of learning programming. However, 
mastering computer programming takes weeks, months, or years. And 
most people encounter programming not as a single 1-h session, but as a 
longer series of sessions and courses). It will be important to study the 
effects of predicting in learning higher-order programming concepts, in 
more realistic time spans, and with more developed students. For 
example, it would be interesting to see whether varying programming 
instruction in the first few weeks of a course would benefit students as 
the course progresses over weeks. 

4.4.2. Measurement of outcomes 
Another important limitation of this study is the measurement of 

student outcomes. Our posttest involved a range of problem types, such 
as identifying and correcting code errors, explaining the purpose and 
function of code snippets in English, selecting code that would achieve a 
given purpose, and writing correct code to achieve a goal. Even with all 
of these question types, the post-test does not reflect the true diversity of 
skills necessary for coding. It will be important in future studies to 
examine the effect of prediction pedagogy on other measures that have 
been used in the computer science education literature (e.g., code 
tracing, parsons problems). 

For example, Schulte (2008) proposed three dimensions that should 
be addressed when teaching programming: understanding structural 
aspects, such as text surface structure; program execution (e.g., data and 
control flow); and functional aspects, i.e., understanding what the code 
does. Future research could benefit from drawing on Schulte’s frame-
work to guide a more holistic assessment of students’ programming 
abilities. Moreover, future research should conduct a systematic and 
formal analysis of errors. This approach would enhance our under-
standing of the specific nature and patterns of errors, providing valuable 
insights for refining instructional methodologies and optimizing 
learning outcomes. 

Additionally, because measures of learning included problems that 
were relatively similar to those used during instruction, it is not clear 

whether predicting can produce far transfer – improved performance on 
tasks that share fewer surface-level similarities with the content covered 
in the lesson. If predicting really does prepare students to engage in 
more realistic programming practices (e.g., trial and error), it might also 
prepare them for future learning (Schwartz & Martin, 2004). Future 
research might consider providing participants with initial instruction 
using either predicting or traditional methods, then examining their 
persistence and success in learning novel programming functions on 
their own. 

Measures of non-cognitive outcomes relied on self-report ratings. It is 
possible that asking students to stop and evaluate their sentiments 
during learning can disrupt typical learning processes. Less intrusive and 
more direct measures of emotions such as physiological measures or 
automated affect detection present a promising alternative to self- 
reported ratings and would be valuable to include in future research. 

4.4.3. Mechanisms for the benefits of prediction 
Although this study did not attempt to explain how predicting in-

fluences students’ cognitive and non-cognitive outcomes, it does provide 
a basis for future studies of these mechanisms. For example, one 
conjecture is that prediction benefits learners by directing their atten-
tion to specific aspects of the task. The materials in this study were 
carefully designed to highlight specific features and concepts. Would 
students experience similar benefits if asked to make a more general 
prediction that would not direct their attention to key features? We are 
currently conducting a follow-up study where students are asked to 
make open-ended predictions about the code rather than specific pre-
dictions (e.g., through a multiple-choice format). Our hypothesis is that 
if attention direction is the key mechanism behind prediction, students 
making open-ended predictions would not benefit as much as those 
making specific predictions. 

4.5. Learning programming in the age of AI 

Furthermore, it is crucial to acknowledge the evolving landscape of 
instructional tools in the field of programming education. One of the 
recent advancements is Chat-GPT, an artificial intelligence model that 
can generate code for learners. However, the mere availability of this 
tool does not automatically suggest its superiority as an educational 
resource. While these models may offer valuable support to novice 
students with limited programming experience, it remains uncertain 
whether they represent the most optimal approach to learning pro-
gramming. Effective programming education entails more than just 
providing code; it requires a solid comprehension of coding funda-
mentals. Students must be able to interpret the code generated by Chat- 
GPT, assess its relevance to their programming goals, and determine its 
suitability in specific contexts. Future research should delve deeper into 
the implications of integrating AI-generated code within programming 
education, shedding light on its potential impacts on students’ learning 
experiences and programming proficiency. 

5. Conclusion 

In this randomized experiment, we found evidence that generating 
predictions can lead to more positive emotional experiences, increased 
motivation, and better learning outcomes among beginning students 
learning computer programming, compared to modifying or writing 
code. The findings of this study raise questions about the effectiveness of 
commonly used instructional strategies for teaching programming, 
particularly for novice programmers in the early stages of learning. 
While traditional "tell-and-practice" methods can be effective, educators 
may benefit from incorporating other approaches, such as prediction, 
into their instructional designs. 

The findings of this study not only have implications for computer 
programming education but also provide insight into how learning tasks 
can impact multiple processes involved in learning from cognitive to 
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affective to motivational. Given the importance of these interacting 
processes in learning any complex skill or knowledge, it is crucial to 
consider how different instructional approaches impact these processes 
simultaneously when designing instruction. 
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