
Learning and Instruction 91 (2024) 101871

0959-4752/© 2024 Elsevier Ltd. All rights reserved.

Prediction versus production for teaching computer programming

Mary C. Tucker a, Xinran (Wendy) Wang b,*, Ji Y. Son c, James W. Stigler d

a Barracuda Networks, USA
b Department of Psychology & Human Development, Vanderbilt University, USA
c Department of Psychology, Cal State LA, USA
d Department of Psychology, UCLA, USA

A R T I C L E I N F O

Keywords:
Computational education
Teaching/learning strategies
Generating prediction
Instructional sequence
Coding experience

A B S T R A C T

Background: Most students struggle when learning to program.
Aims: In this paper we examine two instructional tasks that can be used to introduce programming: tell-and-
practice (the typical pedagogical routine of describing some code or function then having students write code
to practice what they have learned) and prediction (where students are given code and asked to make predictions
about the output before they are told how the code works).
Sample: Participants were 121 college students with no coding experience.
Methods: Participants were randomly assigned to one of two parallel training tasks: predict, or tell-and-practice.
Results: Participants in the predict condition showed greater learning and better non-cognitive outcomes than
those in the tell-and-practice condition.
Conclusions: These findings raise a number of questions about the relationship between programming tasks and
students’ experiences and outcomes in the early stages of learning programming. They also suggest some
pedagogical changes to consider, especially in early introductions to programming.

1. Introduction

Computer programming is a complex skill with cognitive and non-
cognitive challenges (McCracken et al., 2001). To develop flexible pro-
gramming skills, students need to learn programming syntax (Altadmri
& Brown, 2015; Sajaniemi & Navarro-Prieto, 2005), understand pro-
gramming concepts (Bayman & Mayer, 1983; Cañas et al., 1994; Ma,
2007; Ma et al., 2007; Sirkiä & Sorva, 2012), and coordinate and apply
this knowledge to solve novel problems (see Qian & Lehman, 2017 for a
review). Students also need to regulate emotions that arise during
learning (Bosch et al., 2014; D’Mello & Graesser, 2011), maintain
motivation and engagement, and persist in the face of failure (Renumol
et al., 2010).

The most common pedagogy for helping students to meet these
challenges is what we might refer to as tell-and-practice (a phrase coined
by Schwartz et al., 2011). With this pedagogy, students first watch as
teachers explain some example code, and then try modifying or writing
their own code to solve new problems. Tell-and-practice seems like a
logical way to introduce students to programming and thus is a domi-
nant strategy. But is it the best pedagogy?

In this paper, we consider the idea that certain aspects of the tell-and-

practice pedagogy might negatively impact students’ cognitive and non-
cognitive outcomes. We start with an informal task analysis considering
how tell-and-practice instruction might be experienced by students just
beginning to learn to code: where is their attention drawn and what
information is encoded as important? We then consider how to draw
their attention to more critical information using an alternative peda-
gogy where students predict the outcome of code rather than practicing
writing code. Ultimately, we compare tell-and-practice, in a random-
assignment experiment, to a pedagogy designed around making
predictions.

1.1. Cognitive and non-cognitive effects of tell-and-practice

Let’s consider what students might experience during the "practice"
portion of tell-and-practice. If students type in their code and it fails to
run, it may be hard for them to identify exactly what went wrong (e.g.,
was it a missing comma? the wrong function? the algorithm was
implemented incorrectly?). The primary focus for beginning students
should be comprehending a given code’s function and why it produces a
particular output, but novices often fail to identify these most critical
features (Kaczmarczyk et al., 2010). They may be overly focused on

* Corresponding author. Vanderbilt University, TN37203, USA.
E-mail address: wangxinran02013@gmail.com (X.(W. Wang).

Contents lists available at ScienceDirect

Learning and Instruction

journal homepage: www.elsevier.com/locate/learninstruc

https://doi.org/10.1016/j.learninstruc.2023.101871
Received 4 May 2023; Received in revised form 23 November 2023; Accepted 13 December 2023

mailto:wangxinran02013@gmail.com
www.sciencedirect.com/science/journal/09594752
https://www.elsevier.com/locate/learninstruc
https://doi.org/10.1016/j.learninstruc.2023.101871
https://doi.org/10.1016/j.learninstruc.2023.101871
https://doi.org/10.1016/j.learninstruc.2023.101871
http://crossmark.crossref.org/dialog/?doi=10.1016/j.learninstruc.2023.101871&domain=pdf

Learning and Instruction 91 (2024) 101871

2

smaller errors such as syntactic mistakes.
Using the wrong function should be considered a more fundamental

error than a missing comma. However, a beginner may not have suffi-
cient prior experience to make this distinction. Thus, when a novice
student writes code that produces an error message, they may not be
able to tell whether their error is a major or minor one. Missing a
quotation mark and selecting the wrong function may be perceived as
equivalent to a novice because both cause the code to fail. Tell-and-
practice may not effectively direct students’ attention to the parts of
the code that are most important to learn. Even if students’ code runs
successfully during "practice," they might not fully understand why the
code succeeds. Studies have found that these minor and major errors are
indicative of distinct skills (Corney et al., 2011; Venables et al., 2009).
For example, missing a quotation mark only indicates that students do
not flawlessly write syntactically correct code (Robins et al., 2003). But
selecting the wrong function can be a more critical sign that students are
struggling understanding the code’s purpose (Whalley et al., 2006).

In the Structure of Observed Learning Outcomes (SOLO) taxonomy
(Biggs & Collis, 2014), when a student is able to identify critical features
and appreciate the function of code, that aligns with the highest level of
this hierarchical framework, the relational level. At this level, students
demonstrate that they can “see the forest” and explain the purpose of the
code rather than focusing solely on the details ("the trees"). These higher
order learning outcomes positively relate to students’ expertise and
depth of understanding (Lister et al., 2006). Perhaps the pedagogy of
introductory programming should consider how to help students ach-
ieve these higher order learning outcomes. Without guidance towards
these critical learning outcomes, students may practice the details of
code writing while leaving gaps in their functional knowledge of coding.

Beyond these cognitive aspects of the learning experience, tradi-
tional tell-and-practice also has potential non-cognitive disadvantages.
When their written code doesn’t run, students might experience nega-
tive emotions such as frustration. The inherently high cognitive load of
learning to program (Groβe & Renkl, 2007; Sweller, 1994, 2010; Sweller
et al., 2019; Zhu & Simon, 1987) may lead students to think the task is
“too difficult,” or “too complicated,” and that the emotional cost of
learning programming is too high (Flake et al., 2015). While receiving
error messages and debugging code are inherent parts of coding, these
negative emotions might lead students to interpret errors as signs of
failure and incompetence. Frustration and perceived difficulty may
cause students to form negative attitudes towards computer program-
ming as a subject, which may discourage them from future learning.

Some might argue that confusion is a necessary part of learning.
D’Mello and Graesser (2012) have posited that students experience
cognitive disequilibrium and confusion when encountering impasses,
anomalous events, obstacles to goals, and novelty. Faced with cognitive
disequilibrium, students attempt to problem-solve. They are able to
restore cognitive equilibrium if they effectively resolve the impasses. If
they experience obstacles and cannot resolve the impasses (the feeling of
being "stuck"), they are more likely to experience frustration which may
lead to boredom and disengagement (Larson & Richards, 1991; Rob-
inson, 1975). In learning programming, not being able to figure out why
their code does not run may trigger problem solving but may also lead to
frustration, boredom, and disengagement. Especially early on in their
programming experience, they may lack strategies to problem-solve (e.
g., checking for common syntactic errors) or lack the knowledge to
interpret error messages and thus be more susceptible to frustration.

The traditional tell-and-practice format could be thought of as a
pedagogy that gives students practice in writing code before practice in
reading code. For example, when students learn about a new function,
they may focus on reproducing it in practice activities instead of first
understanding the code, learning what each part of the code might do,
and relating the code to the expected output. While the tasks used in the
traditional tell-and-practice approach involve writing code, we could
imagine other approaches might focus on analyzing and comprehending
code before writing it. There may be advantages, especially in the early

stages of learning programming, to using different tasks with different
affordances, which primarily focus on understanding code.

1.2. Possible cognitive benefits of predicting

Although instructors may value students learning to understand
code, they may be unsure how to help students practice such under-
standing. One task that engages students in reading and analyzing code
before writing it is prediction. In prediction tasks, students read code
and then predict what will happen when the code is run. The code
students are asked to read and predict could direct their attention to
specific features of the code.

This approach aligns with prior studies that have highlighted the
benefits of the Predict-Observe-Explain (POE) pedagogy (coined by
White & Gunston, 1992). Specifically, the POE pedagogy contains three
stages: predict what the code will do, observe what happens when the
code is run, and then explain how the code works. To our knowledge,
prediction tasks have mostly been studied outside of programming in-
struction, in domains as varied as reading comprehension, science, and
mathematics (Brod, 2021). Prediction tasks generally ask students to
make a hypothesis as to the outcome of a process based on their
pre-existing knowledge, observe the outcome, and then compare the
outcome with their prediction (Brod, 2021). For example, White and
Gunstone (1992) used a predict-observe-explain pedagogy to promote
conceptual understanding in chemistry. First, students would predict the
outcome of a physical experiment, then observe the outcome of the
experiment and, finally, reconcile any differences between their pre-
diction and the observed outcome. Also, Miller et al. (2013) documented
the benefits of incorporating prediction as a regular teaching routine for
large STEM classes. Their results revealed that when students make a
prediction before a scientific demonstration, they learn more, regardless
of the correctness of their prediction.

Adapting the prediction pedagogy to the domain of programming
could potentially address some of the challenges encountered in tradi-
tional tell-and-practice instruction. For example, in tell-and-practice,
one risk is that students end up focusing on surface features rather
than conceptual or functional understanding. However, with predicting,
instructors could design effective prediction tasks that help students
prioritize understanding and comprehension, direct attention to mean-
ingful features, and encourage semantic processing (Brod, 2021). Pre-
dicting or comprehending code has been found to be a precursor skill to
code writing (Lopez et al., 2008; Venables et al., 2009) and pedagogy
that included code comprehension questions more effectively supports
learning from worked examples (Clancy & Linn, 1999). In Xie et al.’s
(2019) theory of instruction for introductory programming, they
emphasized the importance of teaching programming skills in an
appropriate order. They suggested that students should learn tracing
before writing correct syntax, and they should learn code comprehen-
sion before applying code templates. In an exploratory study, they found
that instruction that sequenced skills in this way deepened under-
standing and decreased errors in writing code on a posttest.

Emphasizing reading and comprehension of code might be of special
importance for novices because they lack prior experience and expertise
in identifying the important features that need the most attention. They
may mistakenly perceive punctuation and syntax, superficial features
that can easily trip up novices, to be the most challenging part of pro-
gramming rather than conceptual understanding. For example, asking
students to predict whether simple code such as ’num < - "eleven"’ will
result in printing num, "eleven", 11, or no output being printed at all may
direct students’ attention toward the function of the assignment oper-
ator (<-). In contrast, if students were asked to write code to save
"eleven" into the object ’num’, they would have to get many details
correct in order for the code to run (e.g., write num in lower case, put
quotation marks around the text "eleven", make sure the assignment
operator is in the correct direction). Because this is a very simple
example, the tell-and-practice pedagogy would result in many students

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

3

writing this code correctly. However, they may not notice the special
relationship between the assignment operator and the object (num) and
the contents ("eleven") in the same way that students who practice
predicting might notice.

Prediction may also help students make more effective use of their
limited cognitive resources during learning (also called cognitive load,
Sweller, 2010a, 2010b). Especially because a novice can easily be
overwhelmed by new information, prediction tasks may be a way to
focus their attention on critical information without introducing extra-
neous task demands nor making the task too easy (e.g. Sweller & Cooper,
1985). In order to make a prediction, students do not have to memorize
correct programming syntax which may produce extraneous load; but
they do have to search for features of the code that would cause a
particular outcome, a demand that is germane to the learning task at
hand. Although the cognitive load may not be lessened, a novice’s
limited bandwidth can be deployed more efficiently, focused on critical
features.

In addition to cognitive load, other cognitive mechanisms point to
the possible benefits of prediction. Asking students to predict an
outcome before they learn about it may draw upon the same cognitive
mechanisms as the testing effect, a learning benefit seen when students
attempt to answer questions about a topic before explicit instruction.
Prior studies have found that asking students questions before giving
explicit instruction leads to more engagement, more connections be-
tween prior knowledge and new information, and ultimately better
learning (Pan & Carpenter, 2023; Little & Bjork, 2011; Little & Bjork,
2016). Similar to pretesting, asking students to make predictions may
also hold potential to produce these benefits. In both pretesting and
making predictions, students retrieve prior knowledge but also attempt
to figure out novel aspects of the situation at hand.

Given the potential cognitive benefits to prediction, we want to go
beyond proposing prediction as an alternative pedagogy: we want to
experimentally compare it with a traditional tell-and-practice approach.
The results, although specific to coding and modest in scope, may yield
theoretical implications. Although there is a rich tradition in educational
theory on how to sequence learning experiences (e.g., what should come
first) going back to Bruner (1966) and many domain-specific theories in
computer science education proposing what early programming in-
struction should look like (e.g., Xie et al., 2019 draws upon and also
reviews many of them), specific experiments should also be conducted.

1.3. Possible non-cognitive benefits of predicting

Given the emotional states that occur during learning, we should also
consider the possible non-cognitive effects of prediction pedagogy:
students may create a different definition of "success in learning," give
students ways of resolving cognitive disequilibrium, and remove pre-
mature threats to self-efficacy.

With a prediction task, students’ definition of success may lean away
from just whether or not the code runs and towards understanding why
the code does what it does. If code does not run as expected (a common
occurrence during learning), a student with a focus on understanding
rather than "getting the code to run" might interpret that as an oppor-
tunity to learn and grow rather than as a sign of failure. For example,
incorrectly predicting that the example code ’num < - "eleven"’ would
result in num being printed and seeing that nothing gets printed could
make students more curious about what exactly is going on in this code.
Over time, predicting might help students perceive computer pro-
gramming as a continuous process of incremental learning and revising,
thus developing more of a growth mindset (Dweck, 1999; Mueller &
Dweck, 1998).

Prediction is also a way to practice the kind of code tracing that
expert programmers engage in during debugging; thus teaching students
a strategy for alleviating cognitive disequilibrium and resolving future
issues. Seeing code outputs that are different from their own predictions
may also evoke a different sort of disequilibrium than finding out that

their code did not run. Incorrect predictions have the potential to pro-
duce more positive emotions such as surprise and curiosity, which can
produce engagement and benefit learning (Brod et al., 2018; Miller
et al., 2013; Theobald & Brod, 2021). Finally, making an incorrect
prediction may not be as threatening to self-efficacy as writing buggy
code. Instead of thinking of themselves as failures as coders, they might
consider this a failure to understand. Making incorrect predictions also
makes students aware of what they do and do not know. This differential
may foster curiosity when they receive direct instruction or read
explanations.

1.4. The current study

The current study explores predicting as a strategy for teaching
programming. In a random-assignment experiment, we compare novice
students working on prediction tasks to those working in the more
traditional tell-and-practice context, and investigate both the cognitive
and non-cognitive effects of the two approaches.

Undergraduate students with no prior experience in coding were
randomly assigned to one of two conditions – 1) the Predict condition in
which participants were given instruction and then asked to make and
test predictions about pre-populated code, or 2) the Traditional in-
struction condition in which participants were given instruction and
then asked to write or manipulate code on their own. Both conditions
received the same explanatory text and instructional content. The only
difference between the conditions was the task they were asked to
perform: in one condition, students were asked to make predictions and
run pre-provided code (Predict condition); in the other condition to
write or manipulate and then run code on their own (Traditional
condition).

We hypothesized that students assigned to the Predict condition
would show increased learning and more positive outcomes on non-
cognitive measures than students assigned to the Traditional condi-
tion. For cognitive measures, we expected that students in the Predict
condition would have higher accuracy in the post-test as well as more
correct solutions when multiple answers are allowed. For non-cognitive
measures, we hypothesized that students in the Predict condition would
report having a better learning experience, including more positive
emotions in learning, more positive responses to error messages, less
perceived difficulty in making sense of the instructional materials, and
less perceived cost of learning.

2. Method

2.1. Participants

Participants were recruited from the online Psychology subject pool,
SONA, at the University of California, Los Angeles (UCLA). Participants
earned course credit for completing the study. To avoid biasing partic-
ipants’ responses and to ensure recruitment of participants who may not
be interested in computer programming, participants were informed
that the goal of the research study was to test a new online learning
module, but not explicitly told that the task would involve program-
ming. Students who were over 18 years old and not majoring in Com-
puter Science or any other computational field were eligible to
participate. To confirm their eligibility, students were asked to confirm
this statement, “Yes, I am at least 18 years old and have never taken
computer programming classes.”

In total, 166 participants signed up for the study. Participants who
did not complete the experiment (n = 21), who completed the experi-
ment in more than one sitting (n = 17), or who took less than 10 min to
complete the experiment (n = 7) were excluded. The resulting analytic
sample comprised 121 students. Before starting the study, participants
were randomly assigned by the Qualtrics (Provo, UT) software to either
the Predict condition (n = 60) or the Traditional condition (n = 61). Of
the final sample of 121 participants, all participants completed every

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

4

activity and answered every question. Seventy-six percent of the sample
were female; one participant self-identified as non-binary, and the rest
as male. The mean age was 20.35 years, SD = 2.56. Thirty-five percent
described themselves as Asian, 23% as White, 17% Latino, 7% Middle
Eastern/North African, 4% Black, 13% as more than one race, and one
participant as Uzbek.

Chi-square analyses revealed no significant associations between
condition and gender (2(2) = 4.56, p = .1) or condition and race/
ethnicity (2(2) = 6.38, p = .382). Also, one way ANOVA showed that
students’ age (F(1,118) = 2.06, p = .20) and GPA (F(1,118) = 1.91, p =
.20) did not significantly differ by condition.

2.2. Learning materials

The learning materials were divided into 4 modules and included a
total of 17 brief activities. The modules were designed to mimic a self-
paced introductory programming course for students with no coding
experience (see Table 1 for a brief summary of the four modules and
https://tinyurl.com/TraditionalCondition and https://tinyurl.com/
PredictionCondition for the full materials). The modules interleaved
explanations, worked examples, and questions (multiple-choice and
written response), as well as interactive code blocks. Each module was
designed to be completed in 10–15 min.

2.3. Procedure

Upon signing up for the study, participants were sent a link by email
to access the experiment. On clicking the link they were randomly
assigned to either the Predict or Traditional instructional conditions. All
participants began by reading an overview of the experiment, confirm-
ing their eligibility, and filling out a pre-survey. (See below for a com-
plete description of measures.)

Next, participants worked their way through the series of four
instructional modules. Participants assigned to the Predict condition
were first provided some introductory information, shown some R code,
and asked to make a prediction about what the code would do by
selecting from one of five multiple-choice options (i.e., “When we click
Run, which output do you think we will see?”). After making each
prediction, students advanced to the next page, where they were
reminded of their prediction and prompted to run the pre-provided code
in order to see what happened. After students ran the code, they then
reported what the output actually was. On the next page, students were
provided text that explained the R code and why it worked the way it
did.

Participants assigned to the Traditional condition were provided
introductory information and some example code. They were asked to
modify the code that was provided in order to produce a specified
output, click “Run”, and then report the output they actually saw (i.e.
“Which output did you see?”). The multiple choice options were the
same as those in the Predict condition. On the next page, students were
provided an explanation of the correct R code and why it worked. Ex-
amples of how an activity appeared in the Predict and Traditional
conditions are provided in Fig. 1.

After each of the four modules (each focused on a different concept
or R function), students in both the Traditional and Predict conditions
were asked a question that required them to generate a rule or sum-
marize the topic of the module.

At the end of each module, participants in both conditions rated their
emotions while completing the learning activities (R sentiment), and
answered the generate-rule question at the end of the module. After all
four modules were completed, participants completed a learning
assessment and a flexibility assessment, followed by a post-survey that
included questions about their age, gender, race/ethnicity, and GPA.
Details regarding the learning assessment and post-survey measures will
be discussed in the measures section below. See Fig. 2 for an illustration
of the study procedure as well as a timeline of when various measures
were administered.

The overall duration of the experiment was similar across conditions.
The students in the Predict condition took a little longer overall (M =
59.34 min, SD = 24.87) than those in the Traditional condition (M =
51.23 min, SD = 22.13), though the difference was not statistically
significant (p = .6). Students in the predict condition wrote slightly
longer summaries of what they had learned at the end of each module
(M = 74.88, SD = 43.47) than did those in the Traditional condition (M
= 61.42, SD = 30.98), but again this difference was not statistically
significant (p = .6).

2.4. Measures

A variety of measures were collected, both cognitive and non-
cognitive.

2.4.1. Cognitive outcomes
Learning assessment. After the four learning modules and before

the post-survey, participants completed a sixteen-item learning assess-
ment (α = .83) that covered concepts related to each of the four learning
modules (Appendix A). The first fifteen items were used as a measure of
learning. The last item was used as the flexibility assessment (see next
section). The learning assessment contained five different question
types: 1) error identification questions, in which participants identified

Table 1
Activities included in each of the 4 online modules.

Module Topics covered Example activities Generate rule/
Summarize
Question

Print() [5
activites]
[very easy]

basics of the print()
functions in R
the differences
between data types,
such as numbers and
characters, by using
quotation marks

print (“Hello
World”)
print (Hello world)
print (1)
str (“Good
Morning”)
str (20)

Come up with a
rule for when you
need to use
quotation marks
and when you do
not.

Arithmetic
Operator [3
activites]
[easy]

the differences
between numbers
and strings of
characters
uses the + operator to
show students that R
can be used as a
calculator.

“7 + 7”
7 + 7
“7” + 7

Create a rule that
would help you
predict when the
operator (like +)
will produce a
sum and when it
will produce an
error.

Objects [5
activites]
[medium]

reinforce the
aforementioned
concepts
the function of the <-
operator in saving a
single value and the
result of a calculation
capital lower case
matter in R coding.

num < - 5
num
name < - “Eleven”
NUM < - 5 num < -
10
Num
count < - 0
count < - count +1

Describe what
the <- operator
does.

Vectors [6
activites]
[hard]

using < - operator to
save multiple values
calculating using
vectors
viewing a particular
value in the vector
Boolean comparison
saving the result of
Boolean comparisons
using < - operator.

my.vector < - c
(1,2,3,4,5)
my.vector
my.vector < - c
(1,2,3,4,5)
my.vector *100
days < - c
(“Sunday”,
“Monday”,
Tuesday”,
“Wednesday”,
“Thursday”,
“Friday”)
days [5] = =

“Friday”
scores < - c (103,
200, 305, 180)
high_score <-
scores >200
high_score [1]

Come up with a
rule for what you
need to do to
store a list of
values in a
vector.

M.C. Tucker et al.

https://tinyurl.com/TraditionalCondition
https://tinyurl.com/PredictionCondition
https://tinyurl.com/PredictionCondition

Learning and Instruction 91 (2024) 101871

5

which lines of code (if any) from a sample contained an error (questions
1–1, 2–1, 3–1, 4–1, and 5–1); 2) code writing questions, in which partic-
ipants were asked to generate code to produce a specified output
(questions 7, 8, and 11) or rewrite a line(s) of code to run without error
(questions 2-2, 3–2, and 4–2); 3) code comprehension questions, in which
participants explained in their own word what a line of code does
(questions 1-1, 2–3, and 4) or what output it will produce (question 12);
error interpretation activities, in which participants were provided a line
of incorrect code and asked to explain why it was wrong (question 10);
and 5) code identification tasks, in which participants were asked to
select, from a list, the correct piece of code to perform a given task
(question 9).

The learning assessment was graded according to a rubric. For error
identification questions, participants were awarded one point for each
correct error identified. For code rewriting questions, participants were
awarded one point for each error corrected. For code comprehension
and error interpretation questions, participants were awarded one point
if the explanation included all elements of the model response, half a
point if the explanation included some but not all elements of the model
response, and no points if the response contained none of the elements
included in the model response. For code identification tasks, partici-
pants were awarded one point for identifying the correct code in the list
and no points for selecting the other incorrect options. Thirteen of the
questions were each worth one point each and two of the questions were
worth two points each, yielding a total correct score between 0 and 17,
with higher scores indicating greater learning.

Flexibility assessment. The last question on the learning assess-
ment was a novel R coding task:

How many ways can you use R to find the sum of 100 and 200? Write
all the code you can think of in the space below. Label each solution
with a number (i.e. 1 for solution number #1)

We used the number of unique correct solutions generated by each
participant as a measure of flexibility (Guilford, 1967; Kwon et al.,
2006).

2.4.2. Non-cognitive measures
R sentiment (measured at six time points). R sentiment (i.e.,

“How do you feel about R right now?”) was measured at six time points
throughout the study: t1 (on the pre-survey), t2 through t5 (after each of
the 4 learning modules), and t6 (on the post-survey). Participants used a
slider to rate their emotion (Munezero et al., 2014) on a continuous scale

from − 100 (Extremely negative) to +100 (Extremely positive) (α = .95).
Response to error (post-survey). Participants were shown a

screenshot of some incorrect R code and the associated error message.
They were asked “Imagine you are the student in the example above.
How do you think you would feel in this situation?” They rated how they
would feel, using a slider, on a scale from − 100 (Extremely negative) to
+100 (Extremely positive).

Cognitive Load Component Survey (post-survey). Nine items
adapted from the Cognitive Load Component Survey (Morrison et al.,
2014) were included in the post-survey to measure participants’ per-
ceptions of the activity they just completed. Each item was rated on a
scale of 0–10. The 9 items were grouped into three subscales (of two to
four items each) and averaged to measure perceived.

• Intrinsic cognitive load (2 items, α = .89):
o “The topics covered in the activity were very complex.”
o “The activity covered code that I perceived as very complex.”

• Extraneous cognitive load (3 items, α = .94):
o “The instructions and/or explanations during the activity were

very unclear.”
o “The instructions and/or explanations were, in terms of learning,

very ineffective.”
o “The instructions and/or explanations were full of unclear

language.”
• Germane cognitive load (4 items, α = .97):

o “The activity really enhanced my knowledge and understanding of
computing/programming.”

o “The activity really enhanced my understanding of the topic(s)
covered.”

o “The activity really enhanced my understanding of the program
code covered.”

o “The activity really enhanced my understanding of the concepts
and definitions.”

Perceived cost (pre- and post-survey). Both on the pre-survey and
on the post-survey, students were asked on four items to evaluate how
costly it would be for them to learn how to program. They were asked to
rate their agreement, from “Strongly disagree” to “Strongly agree”, with
the following four statements on a six-point scale.

• “I think I would have to give up too much to learn programming.”
• “For some reason, computer programming seems like it will be

particularly hard for me.”

Fig. 1. Comparison of an instructional task in the traditional condition and the predict condition.

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

6

Fig. 2. Experimental procedure and measures.

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

7

• “I think learning computer programming would be too stressful for
me.”

• “I think learning computer programming would take up too much of
my time.”

Ratings were averaged across the four statements to get an overall
indicator of perceived cost.

In addition to these non-cognitive measures, additional measures
were collected as part of a larger study (for more information, see
[Tucker, 2007]).

3. Results

For all of the following analyses, we used R version 3.6.2 (R Core
Team, 2019).

3.1. Effect of condition on cognitive outcomes

To examine whether there was an effect of condition on cognitive
outcomes (the learning and flexibility assessments), we conducted
separate t-tests (shown in Table 2 along with descriptive statistics). On
average, participants in the Predict condition scored significantly higher
on the learning assessment and generated more unique solutions on the
flexibility assessment than those in the Traditional condition (shown in
Figs. 3 and 4).

3.2. Effect of condition on non-cognitive outcomes

3.2.1. R sentiment
As a reminder, students expressed their sentiment towards R by

moving a slider on a continuous scale from − 100 (extremely negative) to
+100 (extremely positive) at six timepoints. As shown in Table 3, stu-
dents in the two conditions did not differ significantly at the start of the
study (t1) or after the first module (t2). However, students in the Predict
condition demonstrated significantly more positive sentiment than the
Traditional condition after the second, third, and fourth modules (t3, t4,
t5) and on the post-survey (t6).

We used Growth curve analysis (Mirman, 2014) to analyze change in
sentiment over the course of the six timepoints as shown in Fig. 5. The
overall learning curves were modeled with third-order (cubic) orthog-
onal polynomials and fixed effects of Condition (Traditional vs. Predict)
on all time terms. The Traditional condition was treated as the baseline
and parameters were estimated for the Predict condition. The model also
included random effects of participants on all time terms. The fixed ef-
fects of condition were added individually and their effects on model fit
were evaluated using model comparisons. Improvements in model fit
were evaluated using − 2 times the change in log-likelihood, which is
distributed as X2 with degrees of freedom equal to the number of pa-
rameters added. Parameter estimates, degrees of freedom, and corre-
sponding p-values were estimated using Satterthwaite’s method. This
analysis was carried out in R using the lme4 package.

Participants in the Predict and Traditional conditions did not
significantly differ in sentiment towards R prior to beginning the activity
(X2(1) = 3.42, p = .064). However, students in the Predict condition
increased their sentiment at higher rates than students in the Traditional
condition (X2(1) = 9.50, p = .002). There was also a significant effect of
Condition on the quadratic term (X2(1) = 4.58, p = .03) as well as a
significant effect of Condition on the cubic term (X2(6) = 214.10, p <

.0001).
Perhaps because the first module was easier, students in both con-

ditions reported a rise in R sentiment after completing the first module.
As the modules became more challenging, however, the Traditional
group’s R sentiment dropped, on average, while that of the Predict
condition remained positive.

3.2.2. Effect of condition on response to hypothetical error
The two conditions differed significantly in how they would feel in a

hypothetical situation in which they are shown negative feedback on a
programming task (Fig. 6). Participants in the Predict condition rated
their emotion, on average, more positively than participants in the
Traditional condition (b1 = 28.77, F(1, 119) = 10.30, p = .002, 95% CI
[11.02, 46.52], Adjusted R^2 = 0.07248).

Table 2
Descriptive statistics, confidence intervals of mean differences, and T-tests comparing post-survey measures of learning between the predict and traditional
instructional conditions.

Predict M (SD) Traditional M (SD) b1 [95% CI] t(df) Cohen’s d p

Learning assessment (max = 16) 9.90 (3.72) 8.52 (3.90) 1.38 [0.00, 2.75] 1.99(118.91) 0.36 .05
Flexibility assessment (number of unique correct solutions) 2.18 (1.48) 1.57 (1.09) 2.183 [0.14, 1.08] 2.58(10Con8.32) 0.47 .01

Fig. 3. Distribution of Learning Assessment Scores Broken Down By Condition
Note. Points represent the individual participants’ scores. The horizontal line
represents the median. The red dot represents the mean. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. Distribution of Flexibility Scores Broken Down By Condition
Note. Points represent the individual participants’ scores. The horizontal line
represents the median. The red dot represents the mean. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

8

3.2.3. The effect of condition on perceived cognitive load
To test the effect of condition on students’ perceived cognitive load,

we conducted separate t-tests for each measure: intrinsic load, extra-
neous load, and germane load (descriptive and t-test statistics are
available in Table 4). Although there was no significant difference be-
tween conditions in perceived intrinsic load (p = .37), students in the
Predict condition perceived the extraneous load to be lower (p = .005)
and the germane load to be higher (p = .05) than did those in the
Traditional condition.

3.2.3.1. The effect of condition on cost. In the pre-survey, participants’
perceptions of cost did not differ across conditions (Predict condition: M
= 3.54, SD = 0.99, Traditional condition: M = 3.75, SD = 1.1), t(118.2)
= 1.13, p > .05, Cohen’s d = .21.

On the post-survey, however, there was a significant effect of con-
dition on cost when controlling for pre-survey cost ratings (b1 = 0.40, F
(2, 118) = 6.33, p = .013, 95% CI[0.06, 0.72], eta squared = 0.93).
Participants in the Predict condition perceived learning programming to

be less costly than participants in the Traditional condition. Pre-survey
perceived cost was also a significant covariate (b1 = 0.82, F(1, 118) =
122.10, p < .001, 95% CI[0.66, 0.97], eta squared = 0.05), see Fig. 7.

3.3. Intercorrelations among measures

Finally, we examined the intercorrelations among all of the mea-
sures, both overall (Table 5) and separately within each condition
(Appendix B). In general, the pattern of correlations is well aligned with
expectations of cognitive load theory. Perceived extraneous cognitive
load correlated negatively with perceived germane cognitive load,
which makes sense. Intrinsic load correlated negatively with post-test
scores, which we interpret to mean that participants who perceived
the tasks as more complex also struggled more in their learning.

We also note that attitudes toward learning R correlated positively
with students’ response to the hypothetical error scenario, and that both
of these measures were negatively related to perceived cost as reported
on the post-survey. Together, these patterns support the internal con-
sistency and validity of the measures within the context of our study.

3.4. Error analysis

We present an informal analysis of errors for further examination and
reference in Appendix C.

4. Discussion

Learning programming is a long and challenging process for novice
students, lending importance to research on interventions with the po-
tential to enhance this process. The present study illustrates the impact
of a simple pedagogical adjustment: having students predict outcomes
before viewing the output and explanations. Results indicate that this
approach leads to significant improvements in both cognitive and non-
cognitive outcomes, compared to traditional code writing tasks. This
study extends previous research on the effects of various programming
tasks on instruction and demonstrates the potential of prediction as an
effective strategy for teaching programming.

These findings align with prior studies that have highlighted the
benefits of the Predict-Observe-Explain (POE) pedagogy (coined by
White & Gunston, 1992) in subject areas such as biology and physics.

Table 3
Descriptive statistics and T-Tests comparing sentiment ratings between the
predict and traditional instructional conditions at each of the six time points.

Time Predict
M (SD)

Traditional
M (SD)

b1 [95%
CI]

t(df) Cohen’s
d

p

1 7.65
(49.78)

− 0.26
(50.97)

7.91
[-10.22,
26.05]

− 0.86
(118.99)

.16 .4

2 46.75
(43.60)

30.93
(51.53)

15.82
[-1.38,
33.01]

− 1.82
(116.41)

.33 .07

3 48.88
(40.70)

31.66
(50.25)

17.23
[0.75,
33.70]

− 2.07
(114.79)

.38 .04

4 53.96
(43.55)

15.13
(56.55)

38.84
[20.64,
57.02]

− 4.24
(112.56)

.77 <.0001

5 46.91
(46.57)

6.54
(60.81)

40.38
[20.86,
59.90]

− 4.10
(112.29)

.74 <.0001

6 53.60
(46.11)

25.75
(59.50)

27.85
[8.66,
47.03]

− 2.88
(112.86)

.53 .005

Fig. 5. Mean R Sentiment Across the Six Time Points by Condition
Note. * Indicates a significant mean difference between the two groups (p < .05). Triangles and dots indicate group means; vertical lines, standard errors. Dotted and
solid lines represent predictions of the growth curve model.

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

9

Our brief coding modules each include activities that map onto the three
stages of this approach: predict what the code will do, observe what
happens when code is run, and then explain how the code works.

4.1. Cognitive outcomes

The results of this study indicate that students who were asked to
generate predictions before viewing the output and explanations scored
higher on the learning assessment than students who wrote code without
making predictions. Additionally, despite having less code-writing

practice, students in the Predict condition wrote more coding solu-
tions than those in the Traditional condition on the flexibility assess-
ment. Our study replicated prior research where the utilization of the
POE approach in various educational contexts has been found to
enhance students’ comprehension and conceptual flexibility (Güngör &
Özkan, 2016, December; Hong et al., 2021).

One possible explanation for the effectiveness of predicting in our
modules is that it may have led to deeper semantic processing (Craik &
Lockhart, 1972) of the code elements and syntax. Prior studies have
found that directing novices’ attention to key features could improve
learning (Nadiah et al., 2021; Schnotz & Kürschner, 2007; Son et al.,
2008). By requiring students to register their predictions before running
the code, they may have paid more attention to key features, such as the
purposes of different functions, that would lead to certain output. They
may have come up with hypotheses about which of the features of the
code would be causally related to potential outputs.

Another potential mechanism may be that this pedagogy helps stu-
dents make more connections between concepts. The observed effects
are consistent with prior research, indicating that the POE approach
helps students to actively engage in the learning process by connecting
prior knowledge with newly acquired information, leading to improved
academic outcomes (Kırılmazkaya & Zengin-Kırbağ, 2015). Also,
encouraging students to consider different possible outcomes and
compare their predictions to the actual outcomes may have led students
to find relations between concepts (Schwartz & Bransford, 1998;
Schwartz et al., 2011). This interconnected understanding may have led
to greater cognitive flexibility evidenced by the greater number of
unique solutions.

4.2. Non-cognitive outcomes

The students in the Predict condition also had more positive

Fig. 6. Distribution of Emotion Ratings in Response to a Hypothetical Error
Broken Down By Condition
Note. Points represent individual participants’ scores. Horizontal lines represent
the group medians, red dots, the means. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of
this article.)

Table 4
Descriptive statistics and T-Tests comparing the predict and traditional conditions on cognitive load measures.

Predict
M(SD)

Traditional
M(SD)

b1 [95% CI] t(df) Cohen’s d p

Intrinsic load 4.11(2.14) 4.45(2.03) − 0.34[-1.09,0.41] 0.90 (118.37) .16 .37
Extraneous load 2.38(2.04) 3.45(2.10) − 1.07[-1.81,-0.32] 2.83 (118.98) .52 .005
Germane load 7.23(1.95) 6.44(2.44) 0.79[-0.01,1.59] − 1.97 (114.17) .36 .05

Fig. 7. Distribution of Cost Ratings on the Pre-Survey and Post-Survey Broken Down By Condition
Note. Points represent individual participants’ scores. Horizontal lines represent group medians. The red dot represents the mean. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

10

emotional responses to R and to error messages. Though the two groups
did not differ in their sentiment expressed at the start of the activity,
students in the Predict condition demonstrated more positive sentiment
than students in the Traditional condition as the lesson progressed.
Importantly, the differences between the two groups first emerged as the
task difficulty increased, suggesting that the POE pedagogy may help
buffer against negative emotions associated with challenges or setbacks.
This hypothesis is further supported by the finding that students
assigned to the Predict condition exhibited more positive responses
when shown a hypothetical programming error on the post-survey.
These observed trends are in line with previous studies that found a
link between use of the POE strategy and positive attitudes towards
learning (Bilen & Aydoğdu, 2010; Köse et al., 2003; Liew, 1995).

These findings suggest that the prediction activities may prepare
students more effectively for the cycles of trial and error inherent in
coding. This may be critical because students’ conceptions of pro-
gramming can influence their motivation and learning strategies. For
instance, in a sample of 421 Taiwanese students majoring in computer
science, Liang et al. (2015) found that students who conceived of pro-
gramming as “memorization” and “rote learning” showed more
surface-level motivation and approaches to learning. It may be more
adaptive for students to conceptualize coding as cycles of
prediction-observation-explanation, iteratively updating their knowl-
edge and code.

Students assigned to the Predict condition rated their perceived
extraneous cognitive load to be lower and the germane load to be higher
than students assigned to the Traditional condition. They also consid-
ered the learning activity to be less costly than students assigned to
produce their own code, even though the amount of time and effort (as
measured by word count and time spent) did not meaningfully differ
across the two conditions. The prediction tasks may have directed stu-
dents’ attention to selected features of the code making the learning
experience feel more manageable and less costly, thus leading to more
positive sentiment towards R. In general, pedagogies that avoid over-
whelming students with multiple simultaneous tasks may lead to more
positive attitudes towards the subject (Brod, 2018; Craik & Lockhart,
1972; Prat-Sala & Redford, 2010). Even though the code writing exer-
cises in the Traditional condition were fairly simple (students only had
to write one or two lines of code), some aspects of writing and submit-
ting code must have felt more cognitively burdensome than making
predictions. This load and cost may have increased negative emotions
towards R (such as frustration) during learning.

Existing research has also found the POE pedagogy to result in a
range of favorable non-cognitive outcomes beyond our specific focus.
For example, studies have reported increased interest in academic sub-
jects as an outcome of POE implementation (Bilen & Aydoğdu, 2010;
Köse et al., 2003; Liew, 1995). Additionally, the application of POE
pedagogy has been associated with heightened self-confidence among
learners (Bilen, 2009; Kırılmazkaya & Zengin-Kırbağ, 2015) and the
cultivation of a growth mindset specifically directed toward learning
within the relevant domain (Güngör & Özkan, 2016, December). These
findings underscore the broader positive impacts of POE pedagogy on

various non-cognitive aspects of students’ educational experiences.

4.3. Interaction between cognitive and non-cognitive outcomes

Although we have considered cognitive and non-cognitive outcomes
separately, the processes leading to each are intimately intertwined
during learning. It is not clear whether non-cognitive (i.e., emotional
and motivational) factors affect learning, or if learning affects non-
cognitive experiences. It is also possible that both are true.

On one hand, more positive non-cognitive experiences may lead to
better cognitive outcomes. For example, generating predictions could
elicit responses such as curiosity and interest that can facilitate knowl-
edge acquisition and creativity (Isen, 2000). Prior research has shown
that emotions like curiosity can lead to greater exploration and
engagement (Kosuliev & Stanev, 2020), which could lead to deeper and
more connected understanding. Positive emotions during learning can
also orient students’ attention to feedback (Boekaerts, 2010, pp. 91–111;
Gervey et al., 2005). For example, making a prediction might have made
students feel more invested in the output of the R code.

Psychological cost – students’ perceptions of how costly an activity is
in terms of the time it takes, how stressful it is, and how much it takes
away from participation in other valued activities) (Barron & Hulleman,
2015) – can also impact engagement and future investment in learning.
If students experience learning to program as costly, they may take
maladaptive approaches to learning (e.g., getting it over with) and
decide not to invest in further learning (e.g., learning on their own,
taking more courses, pursuing related majors). Thus, having a more
positive emotional and motivational experience of programming in-
struction might lead students to learn more about programming.

On the other hand, more effective cognitive experiences (that is,
better learning) might create better non-cognitive experiences. Implicit
in each learning task is a cognitive goal. In the Traditional condition, the
goal is to write code that accomplishes some task. Novices engaged in
this task might assume that "learning to code" is learning to write
flawless code that works on the first try. They might misinterpret code
not running as a sign of failure or evidence that they are not good at
programming. When students possess a rigid perspective that learning to
code should yield immediate results without uncertainty or a need for
iterative evaluation (Lee et al., 2023), the inability to produce flawless
code may be more discouraging than it should be. In contrast, making
incorrect predictions on the prediction task might help novices develop
more adaptive epistemic beliefs about what it means to learn to code.
Although students’ epistemic beliefs about computer programming can
predict their self-efficacy in coding (e.g., Lee et al., 2023), future
research should be done to determine whether changing these beliefs
does indeed impact learning and interest.

Another way that the cognitive outcomes impact non-cognitive ones
is that repeated experiences of failure to write code correctly can lead to
a chain of negative emotions such as frustration, disengagement, and
boredom (D’Mello & Graesser, 2011). These emotions can set off "vi-
cious cycles" that depress learning, which further heightens negative
emotions (D’Mello & Graesser, 2011, p. 15).

Table 5
Overall correlation matrix.

Variable 1 2 3 4 5 6 7 8

1. Post-test score –
2. Flexibility .66*** –
3. R Sentiment avg .51*** .43*** –
4. Response to error .21* .20* .32*** –
5. Intrinsic Load − .50*** − .46*** − .21* − .19* –
6. Extraeneous Load − .43*** − .35*** − .46*** − .29*** .45*** –
7. Germane Load .47*** .37*** .56*** .38*** − .17 − .38*** –
8. Pre-test cost − .15 − .25* − .27 − .03 .43*** .26* − .10 –
9. Post-test cost − .23* − .29 − .44*** − .08 .30*** .36*** − .22* .70***

*<0.05, **<0.01, ***<0.001.

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

11

4.4. Limitations and future directions

This study provides initial evidence of the potential of using pre-
dictions as a strategy to improve learning among students in the early
stages of learning programming. However, there are a number of limi-
tations that should be considered when interpreting these results.

4.4.1. Participants and study context
Participants were recruited from the Psychology department at a

competitive public university, and thus may not be representative of the
broader population of novice programming students. We only investi-
gated the effect of predicting versus traditional instruction using the R
programming language. Prior research indicates that some program-
ming languages may be easier to learn than others. Because we only
looked at one programming language, it’s not clear whether or not
predicting might similarly benefit learners in the early stages of learning
another, more complex language.

Another limitation is that the design of this study did not include a
pretest, which limits our ability to capture participants’ prior pro-
gramming knowledge at baseline. We made this decision because we
feared that taking a pre-test might impact students’ psychological state
as they engaged in the learning sessions and thus alter the effect of our
experimental manipulation (Opfer & Thompson, 2008). While the study
asked participants to self-identify as novice learners of R programming
who have not taken any programming courses, it is possible that they
might have possessed some other prior experience or knowledge (e.g.,
mathematical prowess, having taken a logic course), which could have
influenced their performance on the posttest.

Although this study provides initial evidence that predicting may
influence learning in a controlled experimental setting with self-
proclaimed beginners, it does not provide information on whether
these findings extend to naturalistic learning contexts. We focused pri-
marily on very early stages of learning programming. However,
mastering computer programming takes weeks, months, or years. And
most people encounter programming not as a single 1-h session, but as a
longer series of sessions and courses). It will be important to study the
effects of predicting in learning higher-order programming concepts, in
more realistic time spans, and with more developed students. For
example, it would be interesting to see whether varying programming
instruction in the first few weeks of a course would benefit students as
the course progresses over weeks.

4.4.2. Measurement of outcomes
Another important limitation of this study is the measurement of

student outcomes. Our posttest involved a range of problem types, such
as identifying and correcting code errors, explaining the purpose and
function of code snippets in English, selecting code that would achieve a
given purpose, and writing correct code to achieve a goal. Even with all
of these question types, the post-test does not reflect the true diversity of
skills necessary for coding. It will be important in future studies to
examine the effect of prediction pedagogy on other measures that have
been used in the computer science education literature (e.g., code
tracing, parsons problems).

For example, Schulte (2008) proposed three dimensions that should
be addressed when teaching programming: understanding structural
aspects, such as text surface structure; program execution (e.g., data and
control flow); and functional aspects, i.e., understanding what the code
does. Future research could benefit from drawing on Schulte’s frame-
work to guide a more holistic assessment of students’ programming
abilities. Moreover, future research should conduct a systematic and
formal analysis of errors. This approach would enhance our under-
standing of the specific nature and patterns of errors, providing valuable
insights for refining instructional methodologies and optimizing
learning outcomes.

Additionally, because measures of learning included problems that
were relatively similar to those used during instruction, it is not clear

whether predicting can produce far transfer – improved performance on
tasks that share fewer surface-level similarities with the content covered
in the lesson. If predicting really does prepare students to engage in
more realistic programming practices (e.g., trial and error), it might also
prepare them for future learning (Schwartz & Martin, 2004). Future
research might consider providing participants with initial instruction
using either predicting or traditional methods, then examining their
persistence and success in learning novel programming functions on
their own.

Measures of non-cognitive outcomes relied on self-report ratings. It is
possible that asking students to stop and evaluate their sentiments
during learning can disrupt typical learning processes. Less intrusive and
more direct measures of emotions such as physiological measures or
automated affect detection present a promising alternative to self-
reported ratings and would be valuable to include in future research.

4.4.3. Mechanisms for the benefits of prediction
Although this study did not attempt to explain how predicting in-

fluences students’ cognitive and non-cognitive outcomes, it does provide
a basis for future studies of these mechanisms. For example, one
conjecture is that prediction benefits learners by directing their atten-
tion to specific aspects of the task. The materials in this study were
carefully designed to highlight specific features and concepts. Would
students experience similar benefits if asked to make a more general
prediction that would not direct their attention to key features? We are
currently conducting a follow-up study where students are asked to
make open-ended predictions about the code rather than specific pre-
dictions (e.g., through a multiple-choice format). Our hypothesis is that
if attention direction is the key mechanism behind prediction, students
making open-ended predictions would not benefit as much as those
making specific predictions.

4.5. Learning programming in the age of AI

Furthermore, it is crucial to acknowledge the evolving landscape of
instructional tools in the field of programming education. One of the
recent advancements is Chat-GPT, an artificial intelligence model that
can generate code for learners. However, the mere availability of this
tool does not automatically suggest its superiority as an educational
resource. While these models may offer valuable support to novice
students with limited programming experience, it remains uncertain
whether they represent the most optimal approach to learning pro-
gramming. Effective programming education entails more than just
providing code; it requires a solid comprehension of coding funda-
mentals. Students must be able to interpret the code generated by Chat-
GPT, assess its relevance to their programming goals, and determine its
suitability in specific contexts. Future research should delve deeper into
the implications of integrating AI-generated code within programming
education, shedding light on its potential impacts on students’ learning
experiences and programming proficiency.

5. Conclusion

In this randomized experiment, we found evidence that generating
predictions can lead to more positive emotional experiences, increased
motivation, and better learning outcomes among beginning students
learning computer programming, compared to modifying or writing
code. The findings of this study raise questions about the effectiveness of
commonly used instructional strategies for teaching programming,
particularly for novice programmers in the early stages of learning.
While traditional "tell-and-practice" methods can be effective, educators
may benefit from incorporating other approaches, such as prediction,
into their instructional designs.

The findings of this study not only have implications for computer
programming education but also provide insight into how learning tasks
can impact multiple processes involved in learning from cognitive to

M.C. Tucker et al.

Learning and Instruction 91 (2024) 101871

12

affective to motivational. Given the importance of these interacting
processes in learning any complex skill or knowledge, it is crucial to
consider how different instructional approaches impact these processes
simultaneously when designing instruction.

CRediT authorship contribution statement

Mary C. Tucker: Conceptualization, Methodology, Software,
Investigation, Data curation, Visualization, Writing – original draft,
Project administration. Xinran (Wendy) Wang: Investigation, Data
curation, Writing – review & editing, Visualization, Project adminis-
tration. Ji Y. Son: Writing – review & editing, Supervision. James W.
Stigler: Writing – review & editing, Supervision.

Declaration of competing interest

We have no conflict of interest to disclose.

Acknowledgements

This article is adapted from a doctoral dissertation submitted to the
UCLA Psychology Department by the first author (Tucker, 2022). We
gratefully acknowledge the support of the Chan Zuckerberg Initiative
DAF, an advised fund of Silicon Valley Community Foundation
(DRL-1229004) and the California Governor’s Office of Planning and
Research (contract OPR18115).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.learninstruc.2023.101871.

References

Altadmri, A., & Brown, N. C. C. (2015). 37 million compilations: Investigating novice
programming mistakes in large-scale student data. In Proceedings of the 46th ACM
technical Symposium on computer science education (pp. 522–527). https://doi.org/
10.1145/2676723.2677258

Barron, K. E., & Hulleman, C. S. (2015). Expectancy-value-cost model of motivation.
Psychology, 84, 261–271. https://doi.org/10.1016/B978-0-08-097086-8.26099-6

Bayman, P., & Mayer, R. E. (1983). A diagnosis of beginning programmers’
misconceptions of BASIC programming statements. Communications of the ACM, 26
(9), 677–679. https://doi.org/10.1145/358172.358408

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy
(Structure of the Observed Learning Outcome). Academic Press.

Bilen, K., & Aydoğdu, M. (2010). The use of POE (guess-by-eye-explain) strategy in
teaching the concepts of photosynthesis and respiration in plants. Journal of Social
Sciences Institute, 7(14), 179–194.

Boekaerts, M. (2010). The crucial role of motivation and emotion in classroom learning.
The nature of learning: Using research to inspire practice.

Bosch, N., Chen, Y., & D’Mello, S. (2014). It’s written on your face: Detecting affective
states from facial expressions while learning computer programming. In S. Trausan-
Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Intelligent tutoring systems (pp.
39–44). Springer International Publishing. https://doi.org/10.1007/978-3-319-
07221-0_5.

Brod, G. (2021). Predicting as a learning strategy. Psychonomic Bulletin & Review, 28(6),
1839–1847. https://doi.org/10.3758/s13423-021-01904-1

Brod, G., Hasselhorn, M., & Bunge, S. A. (2018). When generating a prediction boosts
learning: The element of surprise. Learning and Instruction, 55, 22–31. https://doi.
org/10.1016/j.learninstruc.2018.01.013

Bruner, J. S. (1966). Toward a theory of instruction. Harvard University Press.
Cañas, J. J., Bajo, M. T., & Gonzalvo, P. (1994). Mental models and computer

programming. International Journal of Human-Computer Studies, 40(5), 795–811.
https://doi.org/10.1006/ijhc.1994.1038

Clancy, M. J., & Linn, M. C. (1999). Patterns and pedagogy. ACM SIGCSE Bulletin, 31(1),
37–42. https://doi.org/10.1145/384266.299673

Corney, M., Lister, R., & Teague, D. (2011). Early relational reasoning and the novice
programmer: Swapping as the’hello world’of relational reasoning. In Proceedings of
the thirteenth australiasian computing education conference (pp. 95–104). Australian
Computer Society.

Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory
research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684. https://doi.
org/10.1016/S0022-5371(72)80001-X

D’Mello, S., & Graesser, A. (2011). The half-life of cognitive-affective states during
complex learning. Cognition & Emotion, 25(7), 1299–1308. https://doi.org/10.1080/
02699931.2011.613668

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning.
Learning and Instruction, 22(2), 145–157. https://doi.org/10.1016/j.
learninstruc.2011.10.001

Dweck, C. (1999). Mindset: The new Psychology of success (ballentine, New York, 2006).
In Self-theories: Their role in motivation, personality, and development. Psychology
press.

Flake, J. K., Barron, K. E., Hulleman, C., McCoach, B. D., & Welsh, M. E. (2015).
Measuring cost: The forgotten component of expectancy-value theory. Contemporary
Educational Psychology, 41, 232–244. https://doi.org/10.1016/j.
cedpsych.2015.03.002

Gervey, B., Igou, E. R., & Trope, Y. (2005). Positive mood and future-oriented self-
evaluation. Motivation and Emotion, 29, 267–294. https://doi.org/10.1007/s11031-
006-9011-3

Große, C. S., & Renkl, A. (2007). Finding and fixing errors in worked examples: Can this
foster learning outcomes? Learning and Instruction, 17(6), 612–634. https://doi.org/
10.1016/j.learninstruc.2007.09.008

Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. Journal of Creative
Behavior, 1(1), 3–14. https://doi.org/10.1002/j.2162-6057.1967.tb00002.x

Güngör, S. N., & Özkan, M. (2016). Teaching enzymes to pre-service science teachers
through POE (predict, observe, explain) method: The case of catalase. In Asia-pacific
forum on science learning & teaching (Vol. 17), 2.

Hong, J. C., Hsiao, H. S., Chen, P. H., Lu, C. C., Tai, K. H., & Tsai, C. R. (2021). Critical
attitude and ability associated with students’ self-confidence and attitude toward
“predict-observe-explain” online science inquiry learning. Computers & Education,
166, Article 104172. https://doi.org/10.1016/j.compedu.2021.104172

Isen, A. M. (2000). Some perspectives on positive affect and self-regulation. Psychological
Inquiry, 11(3), 184–187. https://www.jstor.org/stable/1449800.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student
misconceptions of programming. In Proceedings of the 41st ACM technical symposium
on Computer science education (pp. 107–111). https://doi.org/10.1145/
1734263.1734299

Kırılmazkaya, G., & Zengin-Kırbağ, F. (2015). Investigation of the effect of guess-observe-
explain method on secondary school students’ academic achievement and attitudes
towards science. International Journal of Social Studies, 8(41), 975–981.

Köse, S., Coştu, B., & Keser, Ö. F. (2003). Identifying misconceptions in science subjects:
POE method and sample activities. Journal of PAU Education Faculty, 13(1), 43–53.

Kosuliev, A., & Stanev, E. (2020). Betting on answers as a way of engaging STUDENTS1.
In 59th annual scientific conference - University of Ruse and Union of scientists (pp.
127–131). Bulgaria, 2020.

Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in
mathematics through an open-ended approach. Asia Pacific Education Review, 7(1),
51–61. https://doi.org/10.1007/BF03036784

Larson, R. W., & Richards, M. H. (1991). Boredom in the middle school years: Blaming
schools versus blaming students. American Journal of Education, 99(4), 418–443.
https://www.jstor.org/stable/1085554.

Lee, S. W. Y., Liang, J. C., Hsu, C. Y., & Tsai, M. J. (2023). Students’ beliefs about
computer programming predict their computational thinking and computer
programming self-efficacy. Interactive Learning Environments, 1–21. https://doi.org/
10.1080/10494820.2023.2194929

Liang, J. C., Su, Y. C., & Tsai, C. C. (2015). The assessment of Taiwanese college students’
conceptions of and approaches to learning computer science and their relationships.
The Asia-Pacific Education Researcher, 24, 557–567. https://doi.org/10.1007/
s40299-014-0201-6

Liew, C. W. (1995). A Predict-Observe-Explain teaching sequence for learning about
students’ understanding of heat. Australian Science Teachers Journal, 41(1), 68–72.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the
forest for the trees: Novice programmers and the SOLO taxonomy. ACM SIGCSE
Bulletin, 38(3), 118–122. https://doi.org/10.1145/1140123.1140157

Little, J., & Bjork, E. (2011). Pretesting with multiple-choice questions facilitates
learning. In Proceedings of the annual meeting of the cognitive science society (Vol. 33),
33 https://escholarship.org/uc/item/9xn3f39q.

Little, J. L., & Bjork, E. L. (2016). Multiple-choice pretesting potentiates learning of
related information. Memory & Cognition, 44, 1085–1101. https://doi.org/10.3758/
s13421-016-0621-z

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading,
tracing and writing skills in introductory programming. Proceedings of the Fourth
International Workshop on Computing Education Research, 101–112. https://doi.org/
10.1145/1404520.1404531

Ma, L. (2007). Investigating and improving novice programmers’ mental models of
programming concepts. Doctoral dissertation, University of Strathclyde.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2007). Investigating the viability of mental
models held by novice programmers. In Proceedings of the 38th SIGCSE technical
symposium on computer science education (pp. 499–503). https://doi.org/10.1145/
1227310.1227481

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D.,
Laxer, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students. In
Working group reports from ITiCSE on innovation and technology in computer science
education (pp. 125–180). https://doi.org/10.1145/572133.572137

Miller, K., Lasry, N., Chu, K., & Mazur, E. (2013). Role of physics lecture demonstrations
in conceptual learning. Physical Review Special Topics - Physics Education Research, 9
(2), Article 020113. https://doi.org/10.1103/PhysRevSTPER.9.020113

Mirman, D. (2014). Growth curve analysis: A hands-on tutorial on using multilevel
regression to analyze time course data. In Proceedings of the annual meeting of the
cognitive science society (Vol. 36), 36). Retrieved from https://escholarship.org/uc/it
em/1dp5q4k2.

M.C. Tucker et al.

https://doi.org/10.1016/j.learninstruc.2023.101871
https://doi.org/10.1016/j.learninstruc.2023.101871
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1016/B978-0-08-097086-8.26099-6
https://doi.org/10.1145/358172.358408
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref4
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref4
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref5
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref5
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref5
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref6
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref6
https://doi.org/10.1007/978-3-319-07221-0_5
https://doi.org/10.1007/978-3-319-07221-0_5
https://doi.org/10.3758/s13423-021-01904-1
https://doi.org/10.1016/j.learninstruc.2018.01.013
https://doi.org/10.1016/j.learninstruc.2018.01.013
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref10
https://doi.org/10.1006/ijhc.1994.1038
https://doi.org/10.1145/384266.299673
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref13
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref13
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref13
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref13
https://doi.org/10.1016/S0022-5371(72)80001-X
https://doi.org/10.1016/S0022-5371(72)80001-X
https://doi.org/10.1080/02699931.2011.613668
https://doi.org/10.1080/02699931.2011.613668
https://doi.org/10.1016/j.learninstruc.2011.10.001
https://doi.org/10.1016/j.learninstruc.2011.10.001
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref17
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref17
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref17
https://doi.org/10.1016/j.cedpsych.2015.03.002
https://doi.org/10.1016/j.cedpsych.2015.03.002
https://doi.org/10.1007/s11031-006-9011-3
https://doi.org/10.1007/s11031-006-9011-3
https://doi.org/10.1016/j.learninstruc.2007.09.008
https://doi.org/10.1016/j.learninstruc.2007.09.008
https://doi.org/10.1002/j.2162-6057.1967.tb00002.x
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref23
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref23
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref23
https://doi.org/10.1016/j.compedu.2021.104172
https://www.jstor.org/stable/1449800
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/1734263.1734299
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref27
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref27
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref27
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref28
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref28
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref29
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref29
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref29
https://doi.org/10.1007/BF03036784
https://www.jstor.org/stable/1085554
https://doi.org/10.1080/10494820.2023.2194929
https://doi.org/10.1080/10494820.2023.2194929
https://doi.org/10.1007/s40299-014-0201-6
https://doi.org/10.1007/s40299-014-0201-6
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref34
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref34
https://doi.org/10.1145/1140123.1140157
https://escholarship.org/uc/item/9xn3f39q
https://doi.org/10.3758/s13421-016-0621-z
https://doi.org/10.3758/s13421-016-0621-z
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1404520.1404531
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref39
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref39
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/1227310.1227481
https://doi.org/10.1145/572133.572137
https://doi.org/10.1103/PhysRevSTPER.9.020113
https://escholarship.org/uc/item/1dp5q4k2
https://escholarship.org/uc/item/1dp5q4k2

Learning and Instruction 91 (2024) 101871

13

Morrison, B. B., Dorn, B., & Guzdial, M. (2014). Measuring cognitive load in introductory
CS: Adaptation of an instrument. Proceedings of the Tenth Annual Conference on
International Computing Education Research, 131–138. https://doi.org/10.1145/
2632320.2632348

Mueller, C. M., & Dweck, C. S. (1998). Praise for intelligence can undermine children’s
motivation and performance. Journal of Personality and Social Psychology, 75(1), 33.
https://psycnet.apa.org/doi/10.1037/0022-3514.75.1.33.

Munezero, M., Montero, C. S., Sutinen, E., & Pajunen, J. (2014). Are they different?
Affect, feeling, emotion, sentiment, and opinion detection in text. IEEE Transactions
on Affective Computing, 5(2), 101–111. https://doi.org/10.1109/
TAFFC.2014.2317187

Nadiah, N., Salleh, S., & Laxman, K. (2021). THE impact of VIDEO-BASED predict-
observe-explain (POE) on secondary school students’ scientific literacy. International
Journal on E-Learning, 20(3), 295–321. https://www.learntechlib.org/primary/p/
219040/.

Opfer, J. E., & Thompson, C. A. (2008). The trouble with transfer: Insights from
microgenetic changes in the representation of numerical magnitude. Child
Development, 79(3), 788–804. https://doi.org/10.1111/j.1467-8624.2008.01158.x

Pan, S. C., & Carpenter, S. K. (2023). Prequestioning and pretesting effects: A review of
empirical research, theoretical perspectives, and implications for educational
practice. Educational Psychology Review, 35(4), 97. https://doi.org/10.1007/s10648-
023-09814-5

Prat-Sala, M., & Redford, P. (2010). The interplay between motivation, self-efficacy, and
approaches to studying. British Journal of Educational Psychology, 80(2), 283–305.
https://doi.org/10.1348/000709909X480563

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM Transactions on Computing
Education, 18(1). https://doi.org/10.1145/3077618, 1:1-1:24.

Renumol, V. G., Janakiram, D., & Jayaprakash, S. (2010). Identification of cognitive
processes of effective and ineffective students during computer programming. ACM
Transactions on Computing Education, 10(3), 1–21. https://doi.org/10.1145/
1821996.1821998

Robinson, W. P. (1975). Boredom at school. British Journal of Educational Psychology, 45
(2), 141–152.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2), 137–172. https://doi.org/
10.1076/csed.13.2.137.14200

Sajaniemi, J., & Navarro-Prieto, R. (2005). Roles of Variables in Experts’ Programming
KnowledgeP. Romero, J. Good, E. Acosta Chaparro, & S. Bryant (Eds.). Proc. PPIG,
17, 145–159.

Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory.
Educational Psychology Review, 19, 469–508. https://doi.org/10.1007/s10648-007-
9053-4

Schulte, C. (2008). Block model: An educational model of program comprehension as a
tool for a scholarly approach to teaching. In Proceedings of the fourth international
workshop on computing education research (pp. 149–160).

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16
(4), 475–5223. https://doi.org/10.1207/s1532690xci1604_4

Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus
inventing with contrasting cases: The effects of telling first on learning and transfer.
Journal of Educational Psychology, 103(4), 759. https://psycnet.apa.org/doi/10.1037
/a0025140.

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden
efficiency of encouraging original student production in statistics instruction.
Cognition and Instruction, 22(2), 129–184. https://doi.org/10.1207/
s1532690xci2202_1

Sirkiä, T., & Sorva, J. (2012). Exploring programming misconceptions: An analysis of
student mistakes in visual program simulation exercises. In Proceedings of the 12th
koli calling international Conference on computing education research (pp. 19–28).
https://doi.org/10.1145/2401796.2401799

Son, J. Y., Smith, L. B., & Goldstone, R. L. (2008). Simplicity and generalization: Short-
cutting abstraction in children’s object categorizations. Cognition, 108(3), 626–638.
https://doi.org/10.1016/j.cognition.2008.05.002

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design.
Learning and Instruction, 4(4), 295–312. https://doi.org/10.1016/0959-4752(94)
90003-5

Sweller, J. (2010a). Cognitive load theory: Recent theoretical advances. https://doi.org/
10.1017/CBO9780511844744.004

Sweller, J. (2010b). Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational Psychology Review, 22(2), 123–138. https://doi.org/
10.1007/s10648-010-9128-5

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2(1), 59–89. https://
doi.org/10.1207/s1532690xci0201_3

Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and
instructional design: 20 years later. Educational Psychology Review, 31, 261–292.
https://doi.org/10.1007/s10648-019-09465-5

Theobald, M., & Brod, G. (2021). Tackling scientific misconceptions: The element of
surprise. Child Development, 92(5), 2128–2141. https://doi.org/10.1111/cdev.13582

Tucker, M. C. (2022). Prediction versus production for teaching computer programming
(Publication No. 29393682.) [Doctoral Dissertation. Los Angeles: University of
California. ProQuest Disserations and Theses database.

Venables, A., Tan, G., & Lister, R. (2009). A closer look at tracing, explaining and code
writing skills in the novice programmer. Proceedings of the Fifth International
Workshop on Computing Education Research Workshop, 117–128. https://doi.org/
10.1145/1584322.1584336

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ajith Kumar, P. K., &
Prasad, C. (2006). An Australasian study of reading and comprehension skills in novice
programmers, using the bloom and SOLO taxonomies. https://opus.lib.uts.edu.au/ha
ndle/10453/5050.

White, R. T., & Gunstone, R. F. (1992). Probing understanding. London: The Falmer Press.
Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., … Ko, A. J. (2019).

A theory of instruction for introductory programming skills. Computer Science
Education, 29(2–3), 205–253.

Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing.
Cognition and Instruction, 4(3), 137–166. https://doi.org/10.1207/
s1532690xci0403_1

M.C. Tucker et al.

https://doi.org/10.1145/2632320.2632348
https://doi.org/10.1145/2632320.2632348
https://psycnet.apa.org/doi/10.1037/0022-3514.75.1.33
https://doi.org/10.1109/TAFFC.2014.2317187
https://doi.org/10.1109/TAFFC.2014.2317187
https://www.learntechlib.org/primary/p/219040/
https://www.learntechlib.org/primary/p/219040/
https://doi.org/10.1111/j.1467-8624.2008.01158.x
https://doi.org/10.1007/s10648-023-09814-5
https://doi.org/10.1007/s10648-023-09814-5
https://doi.org/10.1348/000709909X480563
https://doi.org/10.1145/3077618
https://doi.org/10.1145/1821996.1821998
https://doi.org/10.1145/1821996.1821998
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref53
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref53
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref55
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref55
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref55
https://doi.org/10.1007/s10648-007-9053-4
https://doi.org/10.1007/s10648-007-9053-4
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref57
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref57
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref57
https://doi.org/10.1207/s1532690xci1604_4
https://psycnet.apa.org/doi/10.1037/a0025140
https://psycnet.apa.org/doi/10.1037/a0025140
https://doi.org/10.1207/s1532690xci2202_1
https://doi.org/10.1207/s1532690xci2202_1
https://doi.org/10.1145/2401796.2401799
https://doi.org/10.1016/j.cognition.2008.05.002
https://doi.org/10.1016/0959-4752(94)90003-5
https://doi.org/10.1016/0959-4752(94)90003-5
https://doi.org/10.1017/CBO9780511844744.004
https://doi.org/10.1017/CBO9780511844744.004
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1007/s10648-010-9128-5
https://doi.org/10.1207/s1532690xci0201_3
https://doi.org/10.1207/s1532690xci0201_3
https://doi.org/10.1007/s10648-019-09465-5
https://doi.org/10.1111/cdev.13582
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref69
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref69
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref69
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/1584322.1584336
https://opus.lib.uts.edu.au/handle/10453/5050
https://opus.lib.uts.edu.au/handle/10453/5050
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref72
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref74
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref74
http://refhub.elsevier.com/S0959-4752(23)00140-8/sref74
https://doi.org/10.1207/s1532690xci0403_1
https://doi.org/10.1207/s1532690xci0403_1

	Prediction versus production for teaching computer programming
	1 Introduction
	1.1 Cognitive and non-cognitive effects of tell-and-practice
	1.2 Possible cognitive benefits of predicting
	1.3 Possible non-cognitive benefits of predicting
	1.4 The current study

	2 Method
	2.1 Participants
	2.2 Learning materials
	2.3 Procedure
	2.4 Measures
	2.4.1 Cognitive outcomes
	2.4.2 Non-cognitive measures

	3 Results
	3.1 Effect of condition on cognitive outcomes
	3.2 Effect of condition on non-cognitive outcomes
	3.2.1 R sentiment
	3.2.2 Effect of condition on response to hypothetical error
	3.2.3 The effect of condition on perceived cognitive load
	3.2.3.1 The effect of condition on cost

	3.3 Intercorrelations among measures
	3.4 Error analysis

	4 Discussion
	4.1 Cognitive outcomes
	4.2 Non-cognitive outcomes
	4.3 Interaction between cognitive and non-cognitive outcomes
	4.4 Limitations and future directions
	4.4.1 Participants and study context
	4.4.2 Measurement of outcomes
	4.4.3 Mechanisms for the benefits of prediction

	4.5 Learning programming in the age of AI

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References

