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Using multiple representations is an important part of learning and problem-solving in science, technology,
engineering and mathematics fields. For students to acquire flexible knowledge of representations, they
must attend to the structural information within each representation and practice making relational
connections between representations. Most studies so far have only attempted to help students connect
between multiple representations in the lab or short-term classroom interventions, with the intervention
largely separated from students’ authentic learning. The present study developed a representation-mapping
intervention designed to help students interpret, coordinate, and eventually translate across multiple
representations. We integrated the intervention into an online textbook being used in a college course,
allowing us to study its impact in a real course over an extended period of time. The findings of this study
support the efficacy of the representation-mapping intervention for facilitating learning and shed light on
how to implement and refine such interventions in authentic learning contexts.

Public Significance Statement

The study advances the idea that explicit representation-mapping can facilitate students’ learning and
transfer of statistics concepts. The findings provide important insights into college students’ real learning
behaviors and outcomes in an online environment. The method used in this study also guides the
implementation of future theory-based interventions in authentic learning contexts.

Keywords: multiple representations, data visualizations, mapping, STEM, online learning

If we want our students to achieve flexible and transferable
knowledge in science, technology, engineering and mathematics
domains, we must help them develop relational knowledge.
Knowledge of the relations and structures of a domain is what
underlies experts’ ability to transfer and flexibly adapt to novel
situations (e.g., Ericsson et al., 2018). Relational knowledge
connects and organizes the multitude of superficially different
features, concepts, and representations that characterize complex
domains (Goldwater & Schalk, 2016). For example, in math and
statistics, relational knowledge allows students to connect variables

(e.g., x and y) to other representations such as the coordinate plane
(e.g., graphs) and equations, as well as other concepts such as
mathematical operations and story contexts. Acquiring relational
knowledge that supports adaptive, flexible thinking is typically
more difficult than mastering a series of disconnected, isolated
facts (Gentner & Kurtz, 2005). Eliciting transfer in a context novel
to the student is, therefore, a notoriously difficult goal to achieve
(e.g., Renkl et al., 1996).

Our focus here is on developing relational knowledge in statistics
and data science. Once almost entirely based on mathematics
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and mathematical models, statistics is increasingly becoming a
computational science. Modern instruction extends beyond explana-
tory text and formulas to computational methods involving coding,
data visualizations, and computer simulations. What comes with
this trend is an increase in the number and types of representations
necessary for students to master (Seufert, 2003). For example,
Figure 1 shows a screenshot of a page in the online statistics
textbook that is the setting for the current research (Son & Stigler,
2017-2023).

The goal of this page is to teach students about boxplots. But there
are multiple related representations interleaved on the page—
including text, computer code in the R programming language,
and graphs—designed to help students better understand the box-
plot. Research in math and statistics education has demonstrated the
importance of connecting visual displays (such as graphs) with other
representations, such as text or equations, in instructional materials
(Renkl & Scheiter, 2017; Van Dooren et al., 2012). This makes
modern statistics, with its proliferation of multiple representations, a
rich and authentic domain for research on how connecting multiple

Figure 1

representations can help students develop relational knowledge
(Star & Rittle-Johnson, 2009).

Working with multiple representations is an important part of
expert thinking in a domain (Larkin & Simon, 1987). For novices
to become experts, they need to develop the ability to translate and
connect across multiple representations (i.e., representational flexi-
bility; for a review, see Acevedo Nistal et al., 2009; or within- and
between-representation fluency, for a review, see Star & Rittle-
Johnson, 2009). Representational flexibility grows as learners recog-
nize the structural relationships within each representation and
leverage these relationships to make connections across multiple
representations (Even, 1998; Lin et al., 2016; Rau et al., 2015;
Seufert, 2003; Waisman et al., 2014). These connections within-
and between-representations are fundamental to understanding and
transfer in a domain (Chang et al., 2016; Star & Rittle-Johnson, 2009).

Research suggests that exposure to multiple representations of the
same concept can benefit students’ learning in science, technology,
engineering and mathematics domains (Acevedo Nistal et al., 2009;
Cheng, 2000; Mayer, 2009; van der Meij & de Jong, 2006). Working

Screenshot of Multiple Representations in an Online Statistics Textbook (IQR in the Screenshot

Stands for Interquartile Range)

3.7 Boxplots and the Five-Number Summary

Boxplots are a handy tool for visualizing the five-number summary of a distribution. Making boxplots with the function gf_boxplot () will also

clearly show you the IQR and outliers. Very handy.

Unlike histograms, where the values of the variable went on the x-axis, the boxplots made with g£_boxplot () put the values of the variable on

the y-axis. Boxplots do not have to be made this way; this is just the way it is done by gf_boxplot ()

If the values of the variable go on the y-axis, should the variable name appear before or after the ~?

A Before

B After

Here is the code for making a boxplot of Wt from MindsetMatters with gf_boxplot ()

[ gf_boxplot(Wt - 1, data = MindsetMatters)

] Rcode

The 1just means that there is only going to be one boxplot here. Later we will replace that as we explore methods of making multiple boxplots

that appear next to each other.

~

<

Wt

Graph

90~
K 06 08 1.0

The boxplot is made up of a few parts. There is a big white box with two parts-an upper and lower part. There are lines, called whiskers, above

and below the box. Another name for boxplot is box-and-whisker plot.

This is a case where there are no outliers (defined as more than 1.5 IQRs above Q3 or below QI). So the whiskers will simply end at the max and

min values for Wt.

Note.

See the online article for the color version of this figure.
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with multiple representations can make knowledge more adaptive and
flexible (Spiro, 1988), while compensating for the limitations of each
representation (de Jong et al., 1998; Gagatsis et al., 2006). Activi-
ties in which students connect multiple representations for the
same concept—for example, the equation and graph for a straight
line in the context of linear regression—can support the develop-
ment of adaptive expertise (de Jong et al., 1998; Kellman et al.,
2010; McGee & Moore-Russo, 2015).

Despite these benefits, getting students to engage in the work
required to form interconnected knowledge of representations can
be a challenge (Ainsworth et al., 2002; Bodemer et al., 2004; Even,
1998; Lin et al., 2016; Mason et al., 2013; Renkl & Scheiter, 2017;
Schwonke et al., 2009; Waisman et al., 2014). Past research has
shown how difficult it is for students to interpret and operate flexibly
within and between multiple representations (Star & Rittle-Johnson,
2009). Students struggle to navigate multiple representations and
often do not make effective use of them (Ainsworth et al., 2002; Lin
et al., 2016; Van Dooren et al., 2012; Van Someren et al., 1998).
Further, mere exposure to multiple representations is not sufficient
for developing representational flexibility (Ainsworth, 2006; Rau et
al., 2015). Representations, such as visual displays, graphs, or
equations, each impose a high cognitive demand on learners, which
may be compounded when learners are shown multiple representa-
tions (Renkl & Scheiter, 2017; Van Dooren et al., 2012).

Eye-tracking evidence also demonstrates the tensions and diffi-
culties around comprehending multiple representations, compared
to a single representation (e.g., text alone). Eye-tracking studies
have found that when shown both text and visualizations together on
a page, learners pay attention to the text at the expense of compre-
hending the visualization (Hannus & Hyond, 1999; Hegarty & Just,
1993; Schmidt-Weigand et al., 2010). When the illustrations are
irrelevant to the text, these images can distract learners (Sanchez &
Wiley, 2006). Even when the images are relevant to the text,
coupling illustrations with text can lead to overconfidence and an
illusion of learning compared to seeing text alone (Ackerman &
Leiser, 2014; Jaeger & Wiley, 2014; Wiley, 2019).

Part of the difficulty in connecting multiple representations is that
interpreting each representation requires some background knowl-
edge, which the learner may or may not possess (Kozma & Russell,
1997; Renkl & Scheiter, 2017). Novices may not make appropriate
connections among the various representational formats because
the correspondences that seem intuitive to domain experts are not
obvious to novice learners (e.g., Chi et al., 1981). For example, an
eye-tracking study conducted by Mason et al. (2013) showed that
when reading, learners with greater prior domain knowledge were
better able to integrate texts and visual displays than were learners
with less domain knowledge. Novices can also be more easily
distracted by irrelevant features in a visualization (Hegarty et al.,
2010; Lowe, 2004). When learners just begin to learn about a new
representation (e.g., a set of boxplots), they do not already know
which features are informative (the relative position of the boxes)
and which are not (whether the ends of the whiskers have perpen-
dicular caps on them or not).

Researchers and educators have explored various strategies to
help novices connect multiple representations. Some studies have
focused on physical integration, for example, putting text into a
graph instead of separating the two (for a review, see Ayres, 2020).
Others have sought to leverage multiple modalities, such as using
spoken text simultaneously with dynamic visualizations (for a

review, see Low & Sweller, 2014) or using contrast cases to
help students find deep structures underlying the multiple repre-
sentations (Schwartz et al., 2011). Our focus here is on strategies
that directly highlight the underlying relationships within- and
between-representations, such as verbal explanations and gestures
that draw attention to relational connections between multiple
representations (Berthold & Renkl, 2009; Richland, 2015;
Seufert, 2003; Seufert & Briinken, 2006).

Pedagogical approaches such as these are reminiscent of the
analogical learning literature. Analogical learning strategies, such
as alignment, mapping, and comparison, are often used to increase
conceptual understanding and transfer because they require students
to attend to relational structure (Alfieri et al., 2013; Fries et al., 2021;
Gentner et al., 2003; Gentner & Maravilla, 2018; Goldwater &
Schalk, 2016; Gray & Holyoak, 2021; Holyoak, 2012). These
strategies can be directly applied to the goal of making connections
between multiple representations. For example, aligning two repre-
sentations can help students connect superficially dissimilar features
that have the same underlying function (e.g., the x-axis in a histogram
represents the possible values of a variable, whereas the y-axis serves
that function in a vertical boxplot).

Past research has shown the benefits and importance of highlight-
ing alignment and comparisons between structurally similar con-
cepts across different representations (e.g., Butcher, 2006; Martin et
al., 2019; Scheiter & Eitel, 2015; Schmidt-Weigand et al., 2010;
Thompson & Opfer, 2010). For example, Scheiter and Eitel (2015)
discovered that students who were taught with visual cues empha-
sizing the relationship between visual diagrams and text learned
more effectively than pedagogy without such cues. Similarly,
integrating and making explicit the connections between multiple
representations such as diagrams and numerical representations
supports learning (van der Meij & de Jong, 2006).

However, the few studies that have demonstrated such effects of
highlighting alignment and comparisons between multiple repre-
sentations were either conducted in the laboratory (e.g., Schmidt-
Weigand et al., 2010) or as very short-term classroom interventions
(e.g., Martin et al., 2019), using content that was not integrated into
the normal class learning materials (e.g., Berthold & Renkl, 2009;
Seufert, 2003). Moreover, most multiple representation research has
mostly focused on just two types of representations (e.g., graphs of
lines and equations), though in most domains, students often must
navigate among a rich interconnected network of representations
(e.g., boxplots, histograms, code, equations, verbal descriptions).

The Present Study

Our goal in the present study is to use insights from cognitive
psychology and the multiple representations literature to design,
integrate, and evaluate an intervention to help students make con-
nections and extract schemas across multiple representations in an
authentic online learning context. The context in which the study was
conducted was a semester-long college-level introductory statistics
course.

We started by identifying a few representations that need to be
learned and connected in students’ minds in order to make their
statistical knowledge more coherent. Our instructional goal was to
deepen students’ understanding of histograms and boxplots by
helping them to connect these graphical representations to R
code, word equations, and verbal descriptions of situations in the



e of its allied publishers.

yrighted by the American Psychological Association or on

This document is cop

=
Q
>

go through the American Ps

Content may be shared at no cost, but any requests to reuse this content in part or whole must

4 ZHANG, GRAY, CHENG, SON, AND STIGLER

world. In our experience, it takes time for students to learn about
these two different types of data visualizations. Even when the same
data are being visualized with both a histogram and a boxplot,
students may not attend to the structural similarities and differences
between the two types of graphs and the R codes that generate them.

Simply teaching students about different representations does not
guarantee that they will be able to connect them at more than a
superficial level. Achieving representational flexibility with these data
visualizations requires students to understand the connections between
the visuo-spatial information in a plot and the underlying semantic
information represented by the plot (Schnotz & Bannert, 2003).

A representation-mapping intervention that uses alignment and
comparison of histograms, boxplots, and the code used to produce
them, can facilitate this process by helping learners make connec-
tions between the relational structures the different types of plots
have in common. Making these connections explicit by drawing
lines and annotating graphs may be an especially helpful strategy in
multimedia learning (Jee et al., 2013; Thompson & Opfer, 2010).
Presenting aligned examples in a visually salient manner facilitates
comparison and structural learning (Jee et al., 2013; Thompson &
Opfer, 2010). Beyond visual presentation, students are aided when
instructors explicitly emphasize the connections between structures
in class (Richland et al., 2007).

To design our mapping intervention, we identified key connections
among four types of representations: the plots that were the focus of
the instruction (i.e., histograms and boxplots); the R code used for
creating the plots, which would help to highlight the structure
underlying the plots; verbal descriptions of the plotted distributions;
and word equations that represent the relationships in graphs. The
goal is to help students form a more relational, interconnected, and
thus coherent understanding of the statistical concepts and also learn
how to actively engage in such comparisons on their own.

A secondary goal of the study was to explore a new approach for
moving learning strategies from the laboratory into authentic learning
settings. Toward this end, we employed the better book approach
to education R&D (Stigler et al., 2020) in which experiments are
codesigned with researchers, instructors, and developers and imple-
mented in the context of an online interactive textbook being used
in real courses. Students participating in this study were enrolled in
college statistics courses using the textbook, Statistics and Data
Science: A Modeling Approach (Son & Stigler, 2017-2023).

The online textbook was hosted on the CourseKata platform
(https://coursekata.org), which enables researchers to randomly
assign students within the same class to slightly different versions
of the material (Stigler et al., 2020). In the present study, students
were randomly assigned to a version of the textbook that either
included the representational-mapping intervention or not. A de-
identified version of the data generated by students as they work
through the book was made immediately available to researchers on
the CourseKata platform.

Working in an authentic course environment yields several advan-
tages. First, whatever we find in our research can result in immediate
improvements to the instructional materials. If we find that our
representational-mapping intervention improves students’ learning
in this course, such a finding would not only appear in a scholarly
publication but also would be stored in the form of improvements
to the online textbook, to be used by future instructors and students.

Another advantage of working in the context of an authentic
course is that it gives us a more detailed understanding of students’

knowledge prior to the intervention. In the present study, for
example, we knew that because students were several weeks into
the course at the time of the intervention, they had already learned
some basic R concepts and procedures, understood the structure of a
data frame in R, and knew the difference between a variable and an
observation. This made it possible to design an intervention that fit
with students’ prior knowledge. And because this experiment was
implemented as part of normal homework for a real course, students
had time to learn these concepts at a more natural pace.

The online, interactive textbook (Son & Stigler, 2017-2023) was
made up of pages that interleaved text, videos, questions, and R
coding exercises. The textbook was designed according to the
practicing connections approach to curriculum design (Fries et
al., 2021). The approach, simply stated, is this: if we want students
to develop coherent and flexible knowledge in complex domains,
they must be provided with opportunities to practice making
connections—among core concepts, key representations, and a
broad range of relevant contexts—and not just the isolated skills
and concepts required for routine expertise in the domain.

The book takes a modeling approach to statistics, connecting the
typical concepts and skills taught in introductory statistics to the
practice and conceptual structure of statistical modeling (see Son
et al., 2021, for a comprehensive overview of the curriculum). It
emphasizes several key representations, including graphs, R code,
word equations, and notation of the general linear model to represent
relationships among variables, and it is highly interactive, including
more than 1,200 formative assessment questions and R coding
exercises.

We developed our mapping intervention as a set of supplementary
videos that could be embedded in the book at the points where
students are learning about histograms and boxplots (Chapters 3
and 4). Links to the five intervention videos are included in
Appendix A. The videos were designed to direct students’ attention
to the structural similarities among multiple representations by
mapping the same information across representations. Half the
students taking a college-level introductory statistics course were
randomly assigned to a version that included the embedded videos,
while the other half saw a version of the book that did not include the
videos. The question of interest was whether students’ engagement
with the videos would enhance their learning of important structures
and relations in the domain.

Because the book is already designed to support students’ practic-
ing of connections, it provides an even more rigorous testing ground
for our specific hypotheses about this representation-mapping inter-
vention. We hypothesized that controlling for students’ performance
in the earlier chapters of the book, students who watched the
intervention videos would outperform students who did not watch
the videos. We also hypothesized that the effects of watching the
videos on learning would be mediated by students’ own use of the
representational-mapping strategies illustrated in the videos.

Method
Participants

Participants were 210 undergraduate students taking an introduc-
tory statistics course (Introduction to Psychological Statistics) that
used the aforementioned interactive textbook at University of
California, Los Angeles. They participated in the study as part of
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their regular homework assignments, which involved reading and
responding to questions in the online textbook. 104 students were
randomly assigned to the experimental condition (with two pages
that included the supplementary videos), and 106 to the control
condition (which included the same pages but without the videos).

Twenty-four additional students in the class were excluded from
analyses either because they did not complete the course and receive
a final grade (21 students), or because they scored O on all of the
outcome measures, indicating a lack of effort and engagement (three
students).

Although our sample size was predetermined by the number of
students in the class, we still wanted to know if it was large enough
to detect, at the very least, a small to medium effects. Toward this
end, a power analysis was conducted using the pwr package in R
(Champely et al., 2017; Cohen, 1988). The analysis indicated that
we would be able to detect a small to medium effect of condition
(f > .05), and at least a medium effect of the number of videos
watched (f > .10), on the outcome measures.

The study was reviewed and approved by the university’s
institutional review board for the protection of human participants.

Representation-Mapping Intervention

The representation-mapping intervention took the form of five
instructional videos, embedded at two points in the online textbook
(in Chapters 3 and 4). The online textbook contains 12 chapters
broken into three parts: exploring variation, modeling variation, and
evaluating models. Chapters 3 and 4, where the intervention and in-
book assessment took place, were in the exploring variation part of
the textbook. Chapter 3 introduced the concept of a distribution

Figure 2

and used different types of graphs to visualize different types of
variables (e.g., histograms, boxplots, and bar graphs). Chapter 4
introduced the concept of using one variable to explain variation in
another (e.g., we might use variation in students’ sex to explain
variation in their thumb lengths). Students learn how to graph
relationships between two variables, look for evidence in the
graphs that one variable explains variation in another, and repre-
sent these relationships with informal word equations (e.g., thumb
length = sex + other stuff).

The five videos that comprise the intervention run for a total of
26 min. (The first video was 9 min and 11 s; the second video was
3 min and 26 s; the third video was 3 min and 33 s; the fourth video
was 6 min and 6 s; the fifth video was 3 min and 43 s.) The videos
were designed to highlight shared structure among different repre-
sentations of the same statistical relationship.

In each video, an instructor explicitly pointed out the alignment
between four different types of representations: text, R code, data
visualizations, and informal “word equations.” We identified this
particular set of representations because (a) research has shown that
students have difficulty interpreting and translating between differ-
ent forms of numerical, graphical, symbolic, and verbal representa-
tions (Bossé et al., 2011; Van Dooren et al., 2012) and (b) instructors
who have used these course materials anecdotally report that students
struggle to connect visualizations with corresponding R code at this
point in the course.

Figure 2, for example, shows the four comparisons highlighted
in one of the intervention videos in which the instructor explicitly
discusses the alignment among histograms, boxplots, and the R
code used to generate them. Although both graphs depict the same

An Example of Mapping Between Multiple Representations in the Intervention

1. Compare two graphs

Y ey L \

count

" Thumb

A

Same variable in both graphs!

A 4

gf_histogram(~ Thumb, data = Fingers)<:> gf _boxplot (Thumb ~ 1, data = Fingers)

4. Compare the two lines of code

Note. See the online article for the color version of this figure.
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distribution (the distribution of students’ thumb lengths measured
in mm), the superficial differences between them make it difficult
for students to connect and align the two types of plots. For
example, while histograms represent the values of a quantitative
variable on the x-axis, boxplots represent those same values on the
y-axis. This distinction is represented in R by the placement of the
tilde. Putting the variable name before the tilde (e.g., Thumb ~)
results in the variable being represented on the y-axis, whereas
putting the variable after the tilde (e.g., ~ Thumb) results in it being
represented on the x-axis.

Each of the five intervention videos consisted of a screen record-
ing of a female instructor (appearing in a small inset window)
discussing graphs and R code as they appeared on a series of slides.
The instructor drew annotations on each slide as she discussed it, all
of which was captured on the screen recording. By using lines and
colors to explicitly map similar components between multiple
representations, each video was designed to focus learners’ attention
on key connections.

The first three videos were embedded on Page 7 in Chapter 3
(Page 3.7) of the book (see Figure 3). In the first and second videos,
the instructor compared and contrasted two visualizations (a boxplot
and a histogram) of the distribution of a single variable based on the
same data (depicted by arrow 1 in Figure 2), and showed how the
five-number summary (i.e., the maximum, minimum, lower and
upper quartiles, and median) can be mapped to each plot. In the third
video, the instructor discussed the R code that generated each graph
and connected features of the graphs with features of the R code
(depicted by arrows 2, 3, and 4 in Figure 2).

Figure 3

The final two intervention videos appeared on Page 5 in Chapter 4
(Page 4.5). The fourth video again compared histograms, boxplots,
and R code but this time in the context of bivariate relationships
(instead of univariate distributions). For example, Figure 4 shows
side-by-side boxplots, with one variable, Thumb, on the y-axis, and
another variable, Sex, on the x-axis. The core underlying connection
between the R code, boxplots, and verbally described hypothesis is
that all three represent the idea that Sex predicts some of the variation
in Thumb. The fifth video, focused on connections between the R
code (e.g., gf_boxplot(Thumb ~ Sex)) and an informal word equation
used to represent a relationship between two variables (Thumb =
Sex + Other Stuff).

The mapping intervention videos follow a developmental
trajectory. Learners begin in Chapter 3 by connecting multiple
representations (histograms, boxplots, and the five-number sum-
mary) of a single variable distribution (e.g., Thumb lengths). Later
in Chapter 3, they connect these representations to R code and
word equations. In Chapter 4, students extend their understanding
of these visual representations of single variables to explore
relationships between two variables (e.g., Thumb length and Sex).

For example, students initially learn that the y-axis on a vertical
boxplot represents values of the variable Thumb but that the x-axis is
meaningless. But then in Chapter 4, students learn about side-by-
side boxplots where the x-axis is now used to represent values of
the second, categorical variable, Sex (e.g., female or male). This
knowledge about axes connects to the R code for producing the
boxplots, where the variables on the y- and x-axis must be entered in
a particular order (Y ~ X, e.g., gf_boxplot(Thumb ~ Sex)). Having

Screenshot of the Experimental Page With an Intervention Video From Chapter 3

Chapter 3 - Examining Distributions > 3.7 Boxplots and the Five-Number Summary

Based on what you’ve learned, how does a histogram represent variation in the outcome values?

Copy Cut Paste

0/ 10000 Word Limit

Based on what you've learned, how does a boxplot represent variation in the outcome values?

Copy Cut Paste

Note.

See the online article for the color version of this figure.
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Figure 4

R Code and Side-by-Side Boxplots of Bivariate Relationships

gf_boxplot(Thumb ~ Sex, data-Fingers)
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well-mapped connections between these multiple representations
could potentially facilitate students’ learning later in the book when
they will create linear models using a similar syntax.

It is worth noting that the concepts and skills referenced in the
intervention videos had already been covered in the textbook. For
example, on prior pages students had already been exposed to
histograms, including explanations of how to interpret them and create
them in R. The goal of the intervention videos, therefore, was not to
introduce new information but instead to make explicit connections
among different representations of the same statistical ideas.

Procedure

Students taking the class were randomly assigned to get one of the
two versions of the textbook, which they were expected to complete
for homework. The only pages that differed between the two versions
were Page 3.7 (in Chapter 3) and Page 4.5 (in Chapter 4). Students in
the experimental condition saw versions of these pages that included
the intervention videos (three on Page 3.7, two on 4.5) while students
in the control condition saw versions that did not include the videos.
Learning from the intervention videos was assessed using questions
embedded throughout Chapters 3 and 4 of the book as well as with
instructor provided measures, that is, quiz scores.

Measures
Pre-Intervention Assessment

Students’ performance in the course prior to the start of the
intervention (in Chapter 3), was measured using 32 multiple-choice
review questions assigned at the end of Chapter 2. Students received
class credit just for attempting these questions but for research

purposes, their responses were scored as correct or incorrect and
then summed to get a total number correct.

In-Book Assessments

Students’ learning was primarily assessed by a subset of the many
questions embedded throughout Chapters 3 and 4 of the interactive
textbook. These in-book assessments were a mix of multiple-choice
and free-response questions designed to assess students’ under-
standing of histograms, boxplots, and the alignment between the
two. Because the questions were asked to both experimental and
control students, they did not make reference to the contents of the
intervention videos; all students could, in theory, have answered the
questions correctly just based on information available to everyone
in the textbook. For example, we asked, “Based on what you’ve
learned, how does a histogram represent variation in the outcome
variable?” and, “If we made a histogram with four bins (bins = 4),
would those bins cut the data at the same points as the five-number
summary?”

Figure 5 shows where the in-book assessment questions were
placed in Chapters 3 and 4. After the Chapter 3 intervention videos
(on Page 3.7), there were 30 in-book questions (7 multiple-choice,
23 free-response) relevant to the content of the intervention that
appeared on Pages 3.7 through 4.5. We will refer to these as Chapter
3 in-book questions because the content was related to the Chapter 3
intervention videos. After the Chapter 4 intervention videos (on
Page 4.5), we identified 19 questions as Chapter 4 in-book questions
(9 multiple-choice, 10 free-response). These questions were spread
out across the rest of the pages in Chapter 4.

All in-book questions were posed to both experimental and
control groups. Students were given one point for each correct
response. We also collected data from the online platform to get a
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Figure 5
Placement of Questions in the Book

Chapter 3

Chapter 4

Pages 3.1..36 3.7 3.8 |39

310 (41|42 |43 |44 |45 (46|47 |48 (49| 410

Number of 2
intervention
videos

Number of
questions

“Chapter 3 questions” 30 questions
(7 multiple-choice and 23 free-response)

“Chapter 4 questions” 19
questions (9 multiple-choice and
10 free-response)

Note.

rough measure of how much time students spent studying Chapters
3 and 4 of the textbook.

Delayed Take-Home Quizzes

We used two take-home quizzes that were administered by the
instructor to assess students’ performance after a delay. We will
refer to the first quiz as the near-transfer quiz, and the second as the
far-transfer quiz.

The near-transfer quiz was administered 1 day after students were
required to have completed their work in Chapters 3 and 4 of the
textbook. The quiz questions were similar to those asked in the
textbook but used a different context and a different data set. Students
were asked on the near-transfer quiz to write and/or run R code to
create appropriate visualizations for variables in a new data set and
then to interpret those visualizations, a task which was similar to what
they had done in the textbook. For example, one question asked
students to run some code to create a histogram with 10 bins and then
asked them to explain why some of the bins appeared to be empty.
The near-transfer quiz consisted of 18 questions (7 multiple-choice,
11 free-response). Students were given 10 hr to complete the quiz.
The quiz was scored on a scale of 0—100.

The far-transfer quiz was administered near the end of the quarter
(around 6 weeks after the intervention), and the questions were less
similar and more challenging than those in Chapters 3 and 4. The
far-transfer quiz contained 16 questions (11 multiple-choice, 5 free-
response). It evaluated students’ understanding of the entire course,
including visualization related concepts covered in Chapters 3 and 4
and required students to engage in statistical inferences using a real
data set. Chapter 4 concepts regarding the relationships between
variables were fundamental to the development of formal statistical
models later in the course. Students’ understanding of formal
models was the main learning outcome assessed in the far-transfer
quiz. The quiz was also scored on a scale of 0—100.

Video-Watching Behavior

Just because the intervention videos were embedded in the text-
book did not mean that students would necessarily watch them. Thus,
we measured the number of intervention videos each student watched
on each of the two pages. Because there were also other noninter-
vention videos in the textbook, we also measured the number of

See the online article for the color version of this figure.

nonintervention videos students watched in Chapter 4, as a control
variable (there were no nonintervention videos in Chapter 3).

For all videos, we defined “watched a video™ as having watched a
proportion of .5 or more of the video. We chose to use this binary
measure of students’ video-watching behavior because the distribu-
tion of students’ proportion of each video watched was highly
bimodal, with video watching proportions either near 0 or 1. For
example, for the first intervention video in Chapter 3, 89.2% of the
proportions were either below .05 or above .95, and 95.7% for the
second intervention video.

Use of Compare and Contrast

Finally, in addition to coding questions for correctness in order to
measure students’ learning, before data collection commenced we
selected five free-response questions from the Chapter 3 in-book
assessments (i.e., Page 3.7-4.4) to be coded for explicit use of
compare and contrast strategies. These questions were chosen either
because they directly prompted students to engage in comparison
(e.g., “Compare and contrast histograms with boxplots. What are the
strengths and weaknesses of each?”) or because, in the opinion of
the researchers, the quality of students’ answers would be improved
if they employed compare and contrast strategies.

Students’ responses on each of these questions were coded as 0 or
1, with 1 indicating that they used compare and contrast strategies to
answer the question. We defined use of compare and contrast
strategies by the inclusion of comparative words (e.g., whereas,
compared to, more, less) to describe the relationship between two
concepts (e.g., boxplot vs. histogram; quantitative variable vs.
qualitative variable). Students’ total scores for use of compare
and contrast strategies thus could range from 0 to 5.

Transparency and Openness

Data

The data are published on the Open Science Framework website
and the link to access this information is provided in https://osf.io/
yxgm9/?view_only=dda142fd905248bf96d6312da921edOf.

Analytic Methods

The R code needed to reproduce analyses is available on the Open
Science Framework website and the link to access this information is


https://osf.io/yxgm9/?view_only=dda142fd905248bf96d6312da921ed0f
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provided in https://osf.io/yxgm9/?view_only=dda142fd905248bf
96d6312da921edOf.

Materials

The links to the intervention videos and the in-book assessment
questions are included in Appendices A and B.

Data Analysis
Coding

Five trained coders coded students’ responses to free response
questions both for correctness and for the use of compare and/or
contrast strategies. Each coder was randomly assigned to code a
subset of students’ responses blind to condition and each response
was coded independently by two coders. For some of the free-
response questions, partial credit scores of 0.5 were given.

Three questions for which the two coders disagreed on more than
25% of responses were discussed with the whole team. After the
discussion, the scoring rubric for those questions was revised and all
responses recoded. The discrepancy rate averaged across all coders
and questions was 10.9%. These discrepancies were resolved in
meetings that included the two coders and at least one additional
coder. Cohen’s x statistic was calculated to assess interrater reli-
ability of the coding. The agreement between raters was substantial,
e = .7, and greater than would be expected by chance, p < .001.

Planned Analysis

For each learning assessment, we were not only interested in the
difference between experimental groups (intervention vs. control)
but also in the relationship between watching videos and perfor-
mance on the assessment.

Our measure of the number of videos watched differed depending
on which outcome assessment we wanted to analyze. If we were
analyzing the in-book assessments in Chapter 3, we used only those
intervention videos that students had watched in Chapter 3. For
assessments in Chapter 4 and beyond, we used the total number of
intervention videos watched in both Chapters 3 and 4. Our assump-
tion was that video watching could affect only those assessments
that students completed after they had watched the video.

We also evaluated the impact of watching nonintervention videos
by including it as a covariate when analyzing the near- and far-
transfer assessments. This helps to rule out selection effects related
to video watching and makes clear the unique contribution of
watching intervention videos.

Moreover, we planned to use median analyses to explore whether
students’ improvement in near- and far-transfer assessments can be
explained by their use of comparing and contrasting strategies in the
book assessments.

Results
Nonnormality of Performance

All measures of student engagement and performance (e.g., prior
performance, in-book performance, near- and far-transfer, use of
compare and contrast strategies) showed various degrees of non-
normality. Shapiro-Wilk tests confirmed that all distributions

departed significantly from normality, ps < .001. (For a detailed
summary of the nonnormality test statistics, see Appendix C.)

Because of nonnormality in the dependent variables, we relied on
two nonparametric statistical tests: the Wilcoxon-rank sum test and
bootstrapped confidence intervals (CI). To examine any effect of
condition, we performed Wilcoxon rank-sum tests.

Whenever we wanted to control for other variables (e.g., prior
performance), we created 10,000 bootstrapped samples from the
data. For each sample, we fitted a model that included all variables
including those we wanted to control for (e.g., preintervention
performance). We then calculated for each sample the median
difference between groups or the slope representing the relationship
between two quantitative variables (e.g., number of videos watched
and performance). We used these bootstrapped estimates to create a
95% confidence interval. For all bootstrapped analyses, we used the
boot package in R (v1.3-27; Canty & Ripley, 2021).

Preintervention Performance

We analyzed students’ performance on the review questions at the
end of Chapter 2 in order to see if the experimental and control
groups differed before the onset of the intervention. Scores ranged
from 0 to 32 correct among students in the control group (Mdn = 28)
and from 8 to 32 for the experimental group (Mdn = 28). A
Wilcoxon rank-sum test showed no significant difference between
the medians of the two groups (Z = —0.31, p = .753, r = .02).

Video-Watching Behavior

The number of intervention videos and nonintervention videos
students in the experimental and control groups watched is shown in
Table 1. On the whole, students in the experimental group did not
tend to watch the intervention videos. But then they also did not tend
to watch the nonintervention videos, a pattern they shared with
students in the control group. The average number of intervention
videos watched by students in the experimental group, of the three in
Chapter 3, was 1.30, and of the two in Chapter 4, 0.83. The average
number of nonintervention videos watched of the two in Chapter 4
was 0.85 for the experimental group, and .88 for the control group.
These averages did not differ significantly between the two groups,
#(208) = 0.35, p = .727. 88.5% of students in the experimental group
watched at least one of the videos in Chapter 3; only 71.2% watched
at least one intervention video in Chapter 4.

Time Spent on Chapters 3 and 4

Students spent a total of 408.65 min on average studying Chapters
3 and 4 (SD = 311.58 min); the median time spent was 344.20 min.
Figure 6 shows the distribution of students’ total time spent in
Chapters 3 and 4 broken down by condition. A Wilcoxon rank-sum
test showed that the experimental group (Mdn = 382.49) and control
group (Mdn = 301.22) did not differ significantly on the time they
spent on the two chapters (Z=—1.63, p=.103, r=.12). A bootstrap
analysis showed that, within the experimental condition, neither the
number of intervention videos watched (95% bootstrapped CI
[—28.23, 95.37]) nor the number of nonintervention videos watched
(95% bootstrapped CI [-77.96, 165.38]) significantly predicted the
total amount of time each student spent on Chapter 3 and 4. Within
the control group, the number of nonintervention videos watched


https://osf.io/yxgm9/?view_only=dda142fd905248bf96d6312da921ed0f
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Table 1
Distribution of Students in Experimental and Control Group by Number of Intervention and Nonintervention Videos
Watched in Chapters 3 and 4

Experimental group

Chapter 3 Chapter 4 Chapter 4 Control group Chapter 4
Students who watched ... intervention videos intervention videos nonintervention videos nonintervention videos
0 videos 12 30 27 33
1 video 55 62 66 53
2 videos 31 12 11 20
3 videos 6 NA NA NA

At least 1 video 92 (88.5%)

74 (71.2%)

74 (74.0%) 73 (68.9%)

Note. NA = not applicable.

also did not significantly predict their time spent in these two
chapters (95% bootstrapped CI [-20.37, 145.03]).

In-Book Performance
Chapter 3

Summary statistics for students’ performance in Chapter 3,
broken down by condition, are reported in Table 2. A Wilcoxon
rank-sum test showed that students in the experimental condition
(Mdn =21, n = 104) performed significantly better than students in
the control condition (Mdn =20, n =106; Z=2.69, p = .007, r =
.19). A bootstrapped confidence interval based on 10,000 boot-
strapped samples and controlling for preintervention performance
showed the same effect (95% bootstrapped CI [0.50, 2.67]). Full
tables of the analyses were included in Appendix E.

Because not all students in the experimental group watched
the Chapter 3 intervention videos, we also examined whether

the number of Chapter 3 intervention videos watched predicted
students’ performance for Chapter 3 in-book assessments within
the experimental group (Figure 7, upper left; Table 3). Controlling
for students’ prior performance in the book, the 95% bootstrapped
confidence interval for the slope of number of videos watched
predicting Chapter 3 in-book assessments was [0.12, 1.98], an
interval that did not include 0.

Chapter 4

Unlike Chapter 3, the Wilcoxon rank-sum test showed no signifi-
cant difference between the control group (Mdn = 13, n = 106) and
the experimental group (Mdn =12, n =104), Z= .33, r=.02,p =
.739 for performance on the Chapter 4 in-book assessments. Even
when controlling for prior performance, the difference between the
two groups was not significantly different from O (bootstrapped 95%
CI [-0.98, 0.98]).

Figure 6
Time Spent on Chapters 3 and 4 by Condition (in Minutes)
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See the online article for the color version of this figure.
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Table 2
Chapter 3 Performance by Condition

Chapter 3 in-book Chapter 4 in-book

performance performance
Condition Mdn M SD Mdn M SD
Control 20 19.04 4.99 13 11.25 4.00
Experimental 21 20.70 4.65 12 11.35 4.04

One reason we did not find an effect in Chapter 4 might be that
even fewer students watched the intervention videos than in Chapter
3 (88.5% watched at least one video in Chapter 3 vs. only 71.2%
in Chapter 4). We conducted an additional analysis on participants
who had access to the intervention videos to examine whether the
cumulative number of intervention videos watched in Chapter 3
and 4 predicted performance on Chapter 4 in-book assessments
(Figure 7, upper right; Table 4). Controlling for students’ prior
performance in the book, we found a significant relationship between
the total number of intervention videos watched in Chapter 3 and 4
and students’ performance on Chapter 4 in-book assessment (95%
bootstrapped CI [0.10, 1.29]).

Quiz Performance
Near-Transfer Quiz

A Wilcoxon rank-sum test showed no significant difference
between the control group (Mdn = 94, n = 106) and the experimental
group (Mdn =94, n = 103, Z = 1.74, p = .082) on the near-transfer
quiz. This mean difference was also not significantly different from

Figure 7

0 when controlling for prior performance (bootstrapped 95% CI
[-3.09, 0.58]).

We also examined whether the total number of intervention videos
watched (across both Chapters 3 and 4) would predict near-transfer
performance within the experimental group (Figure 7, lower left;
Table 4). We reasoned that even if we did find a significant relation-
ship between videos watched and near-transfer performance, this
relationship might be due to unmeasured confounding variables
correlated with video watching. For example, high video watchers
might be more thorough, hard working, and/or conscientious. For this
reason, we controlled for both prior performance and number of
nonintervention videos watched later in Chapter 4 (the only chapter
that contained nonintervention videos). This allowed us to distinguish
the unique effect of watching intervention videos from the effect of
video-watching in general.

In a bootstrapped analysis controlling for both prior performance
and number of nonintervention videos watched, we found that only
the total number of intervention videos (95% CI [0.71, 2.71])
significantly predicted students’ near-transfer quiz performance.
The number of nonintervention videos watched did not significantly
predict performance (95% CI [-3.58, 0.93]).

When we conducted a similar analysis for the control group (who
obviously did not have intervention videos to watch), the number of
nonintervention videos watched also did not significantly predict
near-transfer quiz performance (95% CI [-2.21, 2.65]).

Far-Transfer Quiz

A Wilcoxon-rank sum test showed no significant difference
between the control group (Mdn = 81, n = 72) and the experimental
group (Mdn = 81,n=286.Z=0.52, p =.602). This mean difference

Chapters 3 and 4 Near- and Far-Transfer Performance by the Number of Relevant Intervention Videos Watched
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Table 3

Chapter 3 Performance by the Number of Intervention Videos Watched in Chapter 3 (Experimental

Group Only)

Number of intervention

Chapter 3 in-book performance

Use of compare and contrast strategy

videos watched in Chapter 3 Mdn M SD Mdn M SD
0 20.5 19.17 5.31 3 2.75 1.14
1 21.0 20.35 4.46 4 3.60 091
2 21.0 21.45 4.72 4 3.81 1.08
3 25.5 24.67 2.58 5 4.67 0.52

was also not significantly different from O when controlling for prior
performance (bootstrapped 95% CI [—4.57, 4.97]).

As we did for near-transfer performance, we examined the
relationship between total intervention videos watched and students’
far-transfer performance, controlling for prior performance and the
number of nonintervention videos watched (Figure 8, lower right;
Table 4). Consistent with the near-transfer results, the number of
intervention videos watched significantly predicted far-transfer
performance (95% CI [0.93, 8.06]) but the number of noninter-
vention videos watched did not (95% CI [—4.32, 6.80]).

When we conducted a similar analysis for the control group, the
number of nonintervention videos watched also did not significantly
predict far-transfer quiz performance (95% CI [—1.84, 7.28]).

The interscale correlations between Chapter 3 in-book perfor-
mance, Chapter 4 in-book performance, near-transfer quiz, and far-
transfer quiz by condition is shown in Appendix D. The correlations
between any two scales ranged from .41 to .68.

Use of Compare and Contrast Strategy

Finally, we investigated whether students’ use of compare and
contrast strategy differed by condition and number of intervention
videos watched. All of these analyses focus on the questions and
video-watching behavior from Chapter 3 because that is the chapter
that contained open-response questions that prompted the use of
comparison strategies. Figure 8 shows the distribution of students’
frequency of using compare and contrast strategies by condition. A
Wilcoxon rank-sum test found that the experimental group (Mdn =
4, n = 104) used significantly more compare and contrast strategies
than the control group (Mdn = 3, n = 106; Z = 6.70, p < .001).

We also examined the relationship between the number of inter-
vention videos watched and use of compare and contrast strategies

Table 4

within the experimental group (Figure 9). The number of intervention
videos watched significantly predicted the frequency of using com-
pare and contrast strategies (95% CI [0.24, 0.74]).

Mediation Analyses

We performed a mediation analysis within the experimental
group, using the psych package in R (Revelle, 2022), to explore
whether students’ use of compare and contrast strategies (the
strategies modeled in the intervention videos) might mediate the
effect of watching the intervention videos on learning (Figure 10).
The Chapter 3 in-book assessment was the outcome variable, the
number of intervention videos watched in Chapter 3, the predictor,
and students’ summary scores for use of compare and contrast
strategies, the mediator.

The indirect effect of the number of intervention videos watched,
through students’ use of comparing and contrasting strategies, on in-
book assessment was found to be statistically significant (effect =
0.61, 95% CI based on 10,000 bootstrapped estimates = [0.20,
1.15]). That is to say, each additional intervention video students
watched resulted in a 0.61 points higher score, on average, on their
in-book assessment through the use of comparing and contrasting
strategies. The direct effect of the number of intervention videos
watched on in-book performance (the ¢’ path) was estimated to be
0.89 points, which was statistically significant, #(101) = 9.60, p <
.001. The total effect (the ¢ path) was estimated to be 1.50, which
was also statistically significant, #(103) = 2.52, p = .013.

On a similar analysis using the near-transfer quiz as the outcome,
we found similar results for the indirect effect (Figure 11, Effect =
0.85, 95% CI of 10,000 bootstrapped estimates = [0.09, 1.94]).
There was also a significant direct effect, #(101) = 34.31, p < .001,
and total effect, #(103) = 2.40, p = .018.

Chapter 4 Near- and Far-Transfer Performance by the Total Number of Intervention Videos Watched in Chapters 3 and 4

Total number of Chapter 4 in-book performance

Near-transfer Far-transfer

intervention videos watched

in Chapters 3 and 4 Mdn M SD Mdn M SD Mdn M SD
0 8.5 8.10 4.14 92 89.67 7.70 81 76.43 16.13
1 12.0 10.47 4.72 92 89.47 7.33 75 67.80 24.69
2 12.0 11.43 3.85 92 89.67 7.89 81 80.83 13.61
3 13.0 12.34 3.67 97 94.89 5.07 81 83.43 11.40
4 14.0 13.00 1.73 97 97.00 2.12 94 95.20 5.02
5 13.0 13.00 2.00 94 95.00 1.73 94 95.00 1.73
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Figure 8

Students’ Use of Compare and Contrast in Chapter 3 by Condition
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Discussion

The present study sought to design, integrate and evaluate, in the
context of a real course, the effect of a representation-mapping
intervention on students’ understanding of multiple statistics repre-
sentations (i.e., texts, histograms, boxplots, R code, word equations).
We sought to address three important questions. First, how would we
design a mapping intervention that could be integrated into valid
learning materials (e.g., an interactive textbook) and thus implemen-
ted in a natural class setting over realistic time scales (weeks rather

Figure 9

See the online article for the color version of this figure.

than hours)? Second, would such an intervention facilitate better
learning of those specific representations both within the textbook
and beyond it (e.g., transfer to class quizzes)? Third, if the mapping
intervention did facilitate learning, what could be a possible
cognitive mechanism? We will summarize our findings as they
relate to the second and third questions, discuss limitations of those
findings, and then summarize lessons learned from our implemen-
tation and evaluation of a representation-mapping intervention in
a realistic learning context.

Students’ Use of Compare and Contrast in Chapter 3 by Number of Intervention

Videos Watched in Chapter 3

Frequency of Using Compare & Contrast in Chapter 3

Note.

2
Number of Intervention Videos Watched in Chapter 3

See the online article for the color version of this figure.
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Figure 10
Mediation Pathways Using Chapter 3 In-Book Performance as the
Outcome Variable

Used
compare/contrast
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Note. ¢ is the path for the total effect of the number of intervention videos
watched on performance and ¢’ is the path for the direct effect of the number
of intervention videos watched in Chapter 3 on Chapter 3 performance.

Overall, the findings showed that representation-mapping inter-
vention videos can facilitate students’ learning and transfer in an
introductory statistics class—but only if students watch the videos.
The difference between the intervention and control condition was
only significant for in-book performance (in Chapter 3), but subse-
quent analyses showed significant relationships between the number
of intervention videos watched and all other measures of learning
(in-book performance for both chapters, near- and far-transfer). This
effect held up even when controlling for prior performance as well as
general watching of nonintervention videos in the textbook.

Beyond the simple matter that any intervention must be taken up
by the learner for it to be effective, it is also possible that some of the
videos were more effective than others. For example, a reliable
effect of condition was primarily found for Chapter 3 in-book
performance but not for Chapter 4. It is possible that the Chapter
3 intervention videos were more effective due to their content. The
content of Chapter 3 intervention videos focused on comparing and
mapping across representations of a single distribution (e.g., a single
boxplot and histogram). This comparison may have been more
fundamental than Chapter 4’s content which focused on mapping
side-by-side boxplots and faceted histograms.

The fact that the number of intervention videos watched predicted
performance after a delay is encouraging. Controlling for students’
prior knowledge, the total number of intervention videos students
watched, but not the number of nonintervention videos watched,
predicted students’ performance days and even weeks later on ques-
tions that were not directly addressed and explained in the interven-
tion. This rigorous analysis allowed us to conclude that the effect is
unlikely to be due simply to “being a better student.” It suggests that
watching representational-mapping videos can uniquely impact learn-
ing. This effect of providing a representational-mapping intervention
are in agreement with many findings in the analogy realm, with many

Figure 11
Mediation Pathways Using the Near-Transfer Quiz Performance as
the Outcome Variable

Used
compare/contrast
strategy in Ch3

0.5
Number of intervention c=219 Near transfer
videos watched in Ch3 ¢ =1.36 quiz

laboratory studies demonstrating that alignment and comparison can
increase conceptual understanding and transfer because they direct
attention to relational structure (e.g., Alfieri et al., 2013; Gentner et al.,
2003; Gentner & Maravilla, 2018; Goldwater & Schalk, 2016;
Holyoak, 2012; Vendetti et al., 2015).

Our exploratory mediation analysis suggests that students’ use of
compare and contrast strategies may be a mechanism that explains
their improved performance. A possible interpretation of these
results is that watching the videos led to more frequent use of
compare/contrast strategies, and use of these strategies led to better
performance. The videos not only modeled explicit representation-
mapping strategies but also pointed out the key relational features
that emerge when using the strategies.

Our results complement prior results that suggest generalized
prompts to “compare and contrast” alone are not particularly effective
because novice learners do not spontaneously focus on the most
important dimensions of the comparison (Catrambone & Holyoak,
1989). This conclusion aligns with findings in the literature that
representational mapping and analogies (Butcher, 2006; Martin et al.,
2019; Scheiter & Eitel, 2015) and comparing and contrasting cases
(Schwartz et al., 2011) can improve student learning. Our findings
provide a specific recommendation to practical instruction: modeling
explicit connection making and other guides that ensure students
attend to important relational similarities may help students more
effectively use comparison strategies later on.

The indirect pathway identified in the mediation analysis suggests
that beyond exposing students to such strategies, instructional
designers need to think about how to engage students in using
the strategies themselves. Even if the connections are obvious to
experts and curriculum designers, the connections must be made in
the minds of the learners (Fries et al., 2021). Future work should
investigate techniques to encourage students’ spontaneous applica-
tion of compare and contrast strategies in authentic learning settings,
possibly by asking different types of follow-up questions.

Limitations

Most lab-based research on student learning assumes that the
students will watch or read the stimulus materials. The importance
of research like ours is that we can clearly see that assumption is
flawed. Even knowing that 12%-29% of students do not watch any
videos in a given chapter is important for all the instructors out there
who are assigning students to watch videos for homework. To
motivate students to watch the videos is an important learning
engineering challenge that will require experimentation and testing
in its own right. We also need to better understand what differs
between students who do and do not watch the videos. Learning
about students’ natural video-watching behavior and its conse-
quences is important.

Although we found that the number of intervention videos
watched can predict performance after a long delay, note that
students were not given points for watching any videos nor penal-
ized for not watching. This allowed us to capture valid data from
video watching. We trust that students were not simply clicking on
the videos because they could just have skipped over them. How-
ever, the consequence was that we only know part of the effect of
these representational alignment videos. This limitation revealed by
doing research in valid learning contexts pushes us to consider
cognitive and motivational psychology together in future work.
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The present study was conducted in a learning environment where
a focus on underlying connections was part of the initial design of the
textbook. Topping up on an already relationally rich environment is
presumably harder, and if these mapping interventions work here,
such interventions may be even more effective in other contexts.
However, we acknowledge that the effect of representation-mapping
interventions may be different in a course without such emphasis, or
where students have different expectations (e.g., a focus on memori-
zation or fluency).

Further, although the mapping videos did not cover new content
and the book itself already contained many videos, we cannot rule out
the simple hypothesis that just having more videos contributes to the
differences between the two conditions. For example, one might
argue that simply the time spent watching the intervention videos (i.e.,
more time interacting with learning materials) explains the improve-
ment in performance. However, this explanation seems implausible
given that (a) the intervention videos were only 26 min in total length
(and few students watched all intervention videos) while students
spent approximately 344 min on average working on the two focus
chapters; (b) the number of nonintervention videos watched was
consistently insignificant and showed a negligible effect size; (c) the
mediation analysis suggested comparison as a mechanism for the
observed improvement, not simply the presence of more multimedia
content. Nonetheless, future studies should include control groups
that are given additional videos without the explicit representation-
mapping (e.g., providing more examples of boxplots or histograms
separately). Alternatively, future studies can also examine whether
formats other than videos that encourage representation-mapping
could produce similar improvements in learning.

Last, we want to note that our participants were students from a
highly selective public university. This population and their learning
strategies could be different in important ways. Similarly, although
the representation-mapping strategies can be theoretically applied to
other domains because they are fundamentally domain-general, we
need more research to understand how to translate learning science
research for understanding in other domains (e.g., physics, chemis-
try, writing), learning modalities (e.g., online vs. face to face), and
more academically diverse populations.

Lessons Learned From Translating Psychological
Insights to Improve Learning in a Real Context

In order to translate a basic finding from cognitive psychology
into a learning intervention, we had to find concepts in the domain of
statistics that should be helped by representation-mapping. By
looking deeply into the discipline, we found ourselves not just
using stimuli made for the purpose of examining the psychological
construct but broadening the psychological construct to make it
useful for teaching statistics.

For example, in tightly controlled lab studies on analogy, there is
often one familiar context to start with and then a novel context to
which analogies can be drawn. However, in an introductory statis-
tics course, there is no clear base domain to start with (neither
histograms nor boxplots can serve as a “base” analogy because both
are new to students). Instead, when we used insights from the
analogical learning literature to design representation-mapping
interventions, we took the basic idea of making relational connec-
tions through alignment and comparison and applied that to learning
multiple representations.

This application brings together two subcultures within the
research community: the multiple representations literature largely
based in science, technology, engineering and mathematics educa-
tion research, with the analogical reasoning literature largely based
in cognitive psychology. Our stimuli, focused on representations
students have to learn in introductory statistics (e.g., histograms and
boxplots), were the product of many converging considerations
from both multiple representation pedagogy and analogical reason-
ing research but also represent a purposeful modification of these
research traditions as well.

Conclusion

As educators and learning scientists, our broader purpose is to
help students develop deep and transferable understanding in com-
plex domains. There is a long history of research on how hard it is to
develop such deep and transferable learning (e.g., Butler et al., 2013;
Ericsson, 2006; Paas, 1992). As educators, we want to see im-
provements in the design of instructional activities that lead to
student success. As learning scientists, we want to understand why
those improvements lead to better student learning.

The practicing connections framework (Fries et al., 2021) is a
pedagogical approach inspired by both of those desires. This framework
emphasizes that students should be provided with learning opportunities
to practice making the connections that are important to the organiza-
tional structure of the domain (Fries et al., 2021). This study demon-
strated one way to instantiate this framework, to support making
connections between representations through the use of explicit
representation-mapping with alignment and comparison. Although
representations such as graphs and code are critically important to
statistics and data science, the structural connections between them are
not obvious to novices. Representation-mapping brings attention to the
structural alignment between these representations and shows how the
same underlying conceptual schema (e.g., how variation in y is predicted
by x) can be seen in multiple forms. This relational understanding can
connect the bits of knowledge into a comprehensible framework,
allowing novices to start to see coherence in a complex domain.

If we want novices to 1 day become experts, we need to work out
how a novice view of the domain develops into the structurally
organized expert view (Ericsson et al., 2018). This study served to
help novice understanding become more relational in a real class with
authentic learning goals. Learning about histograms and boxplots as
visualizations of distributions takes a long time but the benefits are
also consequential in the long run. As both instructors and researchers
we wish all students would simply watch all the videos and do all their
homework. But these behaviors are all in service of a cognitive goal:
ultimately, we want them to make connections between these con-
cepts in their own minds. Bringing cognitive science principles and
rigorous research methodology to a rich learning context, although
difficult and complicated, can incrementally move students’ knowl-
edge to be more expert-like.
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Appendix A

Links to Intervention Videos

Video number Link to video
Chapter 3 Intervention Video 1 https://vimeo.com/487357715
Chapter 3 Intervention Video 2 https://vimeo.com/487378988
Chapter 3 Intervention Video 3 https://vimeo.com/487384713
Chapter 4 Intervention Video 1 https://vimeo.com/488213872
Chapter 4 Intervention Video 2 https://vimeo.com/488222514

Appendix B
Textbook Questions Examined in the Study

Where in book

Question

Page 3.7
Page 3.7
Page 3.7
Page 3.7

Page 3.7

Page 3.7

Page 3.8
Page 3.8

Page 3.8
End of Chapter 3 review

End of Chapter 3 review

End of Chapter 3 review

Based on what you’ve learned, how does a histogram represent variation in the outcome values?

Based on what you’ve learned, how does a boxplot represent variation in the outcome values?

How would you infer the shape of the distribution from a boxplot?

Looking at the boxplot, where is the data more spread apart (has a greater range): In the upper whisker (A) or in
the upper box (B)? Explain your answer.

What would the code below do?

gf_boxplot(Thumb ~ 100, data = Fingers)

If I change the code above to gf_boxplot(Thumb ~ *“”, data = Fingers), what will happen?

A. Nothing

B. It will return an error

C. It will change the value on the x-axis
D. It will change the value on the y-axis

Compare and contrast bar graphs and histograms. Thinking in particular about the x-axis, the y-axis, and
outcome variables, what features are similar and what are different?

Notice that a lot of the functions (e.g., gf_histogram, gf_bar, and tally) use the ~. In histograms and bar graphs,
what goes after the ~ gets placed on the x-axis (the horizontal axis). Is this also true in tally? How so?

What did you notice about the tallies for categorical versus quantitative variables?

Compare and contrast histogram with boxplot. In what ways are they similar and in what ways are they
different from each other? (Discuss the strength and weakness of each in terms of describing shape, center,
and spread.)

If a group of 100 students were given a boxplot and asked to draw a histogram based on the boxplot, what do
you think will happen?

A. Students will produce 100 identical histograms

B. Students’ histograms may depict a variety of ranges because the boxplot will not be clear on what the range of
the distribution is

C. Students’ histograms may depict a variety of shapes because the boxplot will not be clear on what the shape of
the distribution is

D. Students’ histograms may depict a variety of ranges and shapes because the boxplot will not be clear on what
the range and shape of the distribution is

Someone claims that the shape of the distribution of IQ scores is actually bimodal. To verity whether that claim
is true, which would be the best visualization to use?

A. Boxplot

B. Histogram

C. Bar graph

D. None of the above
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Where in book

Question

End of Chapter 3 review

End of Chapter 3 review

End of Chapter 3 review

End of Chapter 3 review

End of Chapter 3 review
Page 4.1
Page 4.1
Page 4.1
Page 4.1

Page 4.2
Page 4.2
Page 4.4
Page 4.4

Page 4.4

Page 4.4
Page 4.5

Page 4.5
Page 4.5

If you want to know the range for the middle 50% of the data, which visualization would you use?
A. Boxplot
B. Histogram
C. Bar graph
D. None of the above

If we want to make boxplots that have Thumb on the y-axis and Sex on the x-axis, which code do you think
might work?

A. gf boxplot(Thumb ~ 1, data = Fingers)
B. gf_boxplot(l ~ Thumb, data = Fingers)
C. gf_boxplot(Thumb ~ Sex, data = Fingers)
D. gf_boxplot(Sex ~ Thumb, data = Fingers)

‘What might be the code for producing two histograms of Thumb in a column, as if the histograms were along

the y-axis?
A. gf histogram(~ Sex, data = Fingers) %>% gf_facet_grid(.~ Thumb)
B. gf_histogram(~ Thumb, data = Fingers) %>% gf facet_grid(Sex ~ .)
C. gf_histogram(~ Sex, data = Fingers) %>% gf facet_grid(Thumb ~ .)
D. None of the above

If we told you about a new kind of visualization called a violin plot (the function for it is gf_violin()), how
should we write the code to depict Thumb on the y-axis?
A. gf violin(Thumb ~ 1, data = Fingers)

B. gf_violin(l ~ Thumb, data = Fingers)
C. gf_violin(Y = Thumb, data = Fingers)
D. gf violin(X = Thumb, data = Fingers)

If we made a histogram with four bins (bins = 4) would those bins cut the data at the same points as the five
number summary?

Can we see how thumb lengths vary by sex in the histogram we made? Why not?

Although better than the single histogram, it is still not easy to compare thumb length across the two side-by-
side histograms. We have to keep numbers in our mind as we look back and forth. Would it be more helpful
if the histograms were stacked vertically (one above the other)? Why?

Take a look at the density histograms you made. Do thumb lengths vary by sex? In what way? Is there still
variation in thumb length among people of the same sex?

What features of the faceted histograms do you look at to judge whether one variable explains variation in
another variable?

You previously learned that categorical variables should go into gf facet_grid(). Now you know that Sex is not
only categorical, it is also the explanatory variable. Why is it useful to split up the histograms by the
explanatory variable?

Actually, you can have categorical outcome variables! It’s just that they would not be represented in a
histogram. What kind of visualization (e.g., graph or plot) would be most appropriate for examining a
categorical outcome variable? Why?

In the plot above in which the male box is higher than the female box, how should we interpret the placement
of the boxes? How should we interpret this visual feature?

If there was no difference between groups, how would you expect the boxes to be positioned in a boxplot?

What do you think the boxplot for Thumb length by Job might look like? Job is a categorical variable with
three levels (no job, part-time, and full-time). How would the boxplot look different from the one for Sex,
which had just two levels?

Why is the full-time box so different from the other two?

Based on the example interpretation for thumb length (“variation in Thumb length is explained by variation in
Sex plus variation in other stuff”), try writing an interpretation for this word equation:

Happiness in countries = Health of individuals + other stuff

Happiness in countries = Wealth of country + Environmental beauty + other stuff

Try writing a word equation for health of housekeepers. What are some explanatory variables that might explain
variation in health?
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Appendix B (continued)

Where in book Question

Where students saw the Chapter 4 intervention videos (the start of Chapter 4 in book assessment)
Page 4.5 From the faceted histogram, do you think Sex explains some variation in Thumb? Why or why not?

20

15
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4.3 50 60 '0 Sb E"D
Thumb
Page 4.5 From the boxplot, do you think Sex explains some variation in Thumb? Why or why not?
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Assume you know the cutoffs for outliers in a data set.

If you want to find the exact number of outliers in your data set, which graph(s) should you use?
A. Histogram only
B. Boxplot only
C. Both histogram and boxplot
D. Either histogram or boxplot

If you want to find the exact numerical value of outliers in your data set, which graph(s) should you use?
A. Histogram only
B. Boxplot only
C. Both histogram and boxplot
D. Either histogram or boxplot

Page 4.5 Given the graph below that shows the faceted histogram of Thumb by Sex, write a word equation to express the

relationship shown in the graph.

60~

0 i
.
[.8 u:] L:Z 6‘4
Thumb
Page 4.8 Do you think we could explain some of the variation in thumb length with variation in height? Could we use
the same approach with Height as we used with Sex? Why or why not?
Page 4.8 If we created a faceted grid of histograms of Thumb based on Height2Group, what would you expect to see?
Page 4.8 Which Height variable (the three-category variable or the two-category variable) explains more variation in

Thumb length? How can you tell? (they always chose the answer in multiple choice above)
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Where in book

Question

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

End of Chapter 4 review

Originally, these data were collected by a group of researchers interested in sleep but let’s say a researcher
comes upon this data and is interested in using it to explain variation in students’ levels of happiness. Why
might someone want to explain variation in happiness? What other variables in this data frame might be
meaningfully related to happiness?

Below are two sets of faceted histograms. On the left is Happiness faceted by GPA3Group and on the right is
Happiness faceted by Stress. Which variable seems better at explaining variation in Happiness: GPA3Group
or Stress? Why do you think that variable is a better explanatory variable? (Cite features of the histograms to
support your answer.)

A veterinarian measures the resting heart rate of all of his dog clientele and records the breeds of the dogs. He
categorizes each dogs as belonging to a “small breed” or “large breed.” He organizes all of this information in
a data frame called Dogs. To visualize his data, he created a faceted histogram using this code:

of histogram(~ Heartrate, data = Dogs) %>%

of facet_grid(Breedsize ~ .)

What kind of variable is Heartrate?

A. Quantitative

B. Qualitative

C. Categorical

D. Discrete

E. You can’t tell based on the information given

‘What will appear on the x-axis in the graph made by the veterinarian?
A. Heart rates of dogs from the Dogs data set
B. Breed sizes of dogs from the Dogs data set
C. Dogs
D. gf_histogram
E. Frequency of different values of heart rate

How will the faceted histograms appear?

A. The two histograms will be side by side along the x-axis

B. The two histograms will be stacked above and below along the y-axis
C. It will be completely random

D. There is no way to tell unless I run the code

If the veterinarian wanted to compare the heart rates of different breed sizes by putting two histograms side by

side on the x-axis, how should he change the code for the faceted histogram above?

A. Do not change the code; it already does this

B. Move Heartrate before the tilde in the first line of code: gf histogram(Heartrate ~ ., data = Dogs)
C. Move breedsize after the tilde in the second line of code: gf_facet_grid(. ~ breedSize)

D. Histograms cannot be put side by side because it is a frequency distribution

Which of the following graphs shows outcome values that are uniformly distributed across the entire range?
A. Histogram with equal heights across all bins
B. Boxplot with equal-length whiskers and sections of box
C. Histogram with different height bins
D. Boxplot with whiskers of different lengths

A powerlifting coach records how much each of his athletes can bench press in a data set and includes their sex.
He wants to find out if sex can explain any variation in an athlete’s bench press. Which graph can he use?
Select all that apply.

. One histogram

. One boxplot

. Faceted histogram by sex

. Side-by-side boxplots by sex

. Faceted histogram by bench press

. Side-by-side boxplots by bench press

Based on his data visualizations, the coach discovers that Sex seems to explain some variation in how much his
athletes can bench press. Which of the following data visualizations show that Sex explains variation in
bench press? Select all that apply.

A. a visualization that shows women bench pressing more than men

B. a visualization that shows men and women bench pressing similar amounts

C. a visualization that shows that the amount the athletes can bench press varies widely

D. a visualization that shows men bench pressing more than women

E. a visualization that shows that the amount the athletes can bench press does not vary much

How would you tell by looking at the graphs if breed size explained variation in resting heart rate? What would
you look for in the graphs?

Suppose the heart rate of the dog can be better predicted if we knew the breed size of the dog, the dog’s
physical health condition, and other stuff. Write the word equation to express this.

TmoQw >
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Appendix C

Results of Nonnormality Test of Performance Measures

Shapiro-Wilk test

Performance measure w P
Chapters 3 and 4 page view 0.93 <.001
Chapter 2 in-book performance 0.79 <.001
Chapter 3 in-book performance 0.95 <.001
Chapter 4 in-book performance 0.92 <.001
Near transfer 0.86 <.001
Far transfer 0.91 <.001
Use of compare and contrast 0.93 <.001
Appendix D
Statistics for Interscale Correlations
Table D1
Interscale Correlations for the Control Group
Assessment Chapter 3 Chapter 4 Near transfer Far transfer
Chapter 3 —
Chapter 4 0.64*** —
Near transfer 0.46™** 0.417%%* —
Far transfer 0.47%%* 0.447%% 0.46™** —

<001 (two-tailed).

Table D2
Interscale Correlations for the Experimental Group

Assessment Chapter 3 Chapter 4 Near transfer Far transfer
Chapter 3 —

Chapter 4 0.68** —

Near transfer 0.56*** 0.41%** —

Far transfer 0.49%** 0.447%* 0.48%* —

) < .001 (two-tailed).

Appendix E

Complete Regression Results

Table E1
Regression Results Using Chapter 3 Performance as the Outcome
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 4.19%* [-2.05, 8.77]
Condition 1.57** [0.50, 2.67]
Preintervention performance 0.56™** [0.40, 0.78]
R® = 338**

95% CI [.23, 48]

Note. A significant b-weight indicates the semipartial correlation is also significant.
b represents unstandardized regression weights. CI = confidence interval; LL = lower limit;

UL = upper limit.
*p < .05, two-tailed. ** p < .01, two-tailed.

(Appendices continue)
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Table E2
Regression Results Using Chapter 3 Performance as the Outcome (Within Experimental)
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 4.67* [—2.40, 9.67]
Number of Chapter 3 intervention 1.09* [0.12, 1.98]
videos watched
Preintervention performance 0.54** [0.36, 0.80]
R = 336™*

95% CI [.22, .49]
Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit;
UL = upper limit.
* p < .05, two-tailed.

** p < .01, two-tailed.

Table E3
Regression Results Using Chapter 4 Performance as the Outcome
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 1.87 [-3.06, 5.87]
Condition -0.01 [—0.98, 0.98]
Preintervention performance 0.35"* [0.21, 0.53]
R = .181%*

95% CI [.08, .33]
Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit;
UL = upper limit.
*p < .05, two-tailed. ** p < .01, two-tailed.

Table E4
Regression Results Using Chapter 4 Performance as the Outcome (Within Experimental)
Predictor b b 95% CI [LL, UL] Fit
(Intercept) —2.43 [—6.59, 0.74]
Total number of intervention 0.69%* [0.10, 1.29]
videos watched
Preintervention performance 0.46%* [0.33, 0.62]
R* = 339**

95% CI [.20, .49]
Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit;
UL = upper limit.
* p < .05, two-tailed.

** p < .01, two-tailed.

Table ES
Regression Results Using Near-Transfer Quiz Performance as the Outcome
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 75.36™* [65.11, 82.91]
Condition -1.26 [-3.09, 0.58]
Preintervention performance 0.65%* [0.38, 1.01]
R = .185%*

95% CI [.09, .33]
Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit;
UL = upper limit.
* p < .05, two-tailed.

*# p < .01, two-tailed.
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Table E6
Regression Results Using Near-Transfer Quiz Performance as the Outcome (Within Experimental)
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 69.927%* [56.48, 81.01]
Total number of intervention videos watched 1.63* [0.71, 2.71]
Number of nonintervention videos watched -1.19 [-3.58, 0.93]
Preintervention performance 0.71%* [0.29, 1.22]
R? = 204**

95% CI [.14, .51]
Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit; UL = upper
limit.
* p < .05, two-tailed.

*

¥ p < .01, two-tailed.

Table E7
Regression Results Using Near-Transfer Quiz Performance as the Outcome (Within Control)

Predictor b b 95% CI [LL, UL] Fit
(Intercept) 77.61%* [63.68, 86.02]
Number of nonintervention videos watched 0.27 [-2.21, 2.65]
Preintervention performance 0.56** [0.24, 1.08]
R = .139™*

95% CI [.05, .33]
Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit; UL = upper
limit.
* p < .05, two-tailed. ** p < .01, two-tailed.

Table E8
Regression Results Using Far-Transfer Quiz Performance as the Outcome
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 49.56™* [21.15, 69.56]
Condition 0.13 [—4.57, 4.97]
Preintervention performance 1.13%* [0.41, 2.15]
R = .113**

95% CI [.02, .31]
Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit; UL = upper
limit.
*p < .05, two-tailed. ** p < .01, two-tailed.

Table E9
Regression Results Using Far-Transfer Quiz Performance as the Outcome (Within Experimental)
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 45.98%* [18.01, 72.14]
Total number of intervention videos watched 4.15% [0.93, 8.06]
Number of nonintervention videos watched 1.85 . [—4.32, 6.80]
Preintervention performance 0.88™* [-0.11, 1.98]
R* = 187**

95% CI [.07, .43]

Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit; UL = upper
limit.
* p < .05, two-tailed.

*

“* p < .01, two-tailed.
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Table E10
Regression Results Using Far-Transfer Quiz Performance as the Outcome (Within Control)
Predictor b b 95% CI [LL, UL] Fit
(Intercept) 49.06™* [-1.21, 72.73]
Number of nonintervention videos watched 2.68 [—1.84, 7.28]
Preintervention performance 1.06™* [0.22, 2.88]
R = .148**

95% CI [.03, .45]

Note. b represents unstandardized regression weights. CI = confidence interval; LL = lower limit; UL = upper
limit.
* p < .05, two-tailed. ** p < .01, two-tailed.
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